ترغب بنشر مسار تعليمي؟ اضغط هنا

The well-known classical nucleation theory (CNT) for the free energy barrier towards formation of a nucleus of critical size of the new stable phase within the parent metastable phase fails to take into account the influence of other metastable phase s having density/order intermediate between the parent metastable phase and the final stable phase. This lacuna can be more serious than capillary approximation or spherical shape assumption made in CNT. This issue is particularly significant in ice nucleation because liquid water shows rich phase diagram consisting of two (high and low density) liquid phases in supercooled state. The explanations of thermodynamic and dynamic anomalies of supercooled water often invoke the possible influence of a liquid-liquid transition between two metastable liquid phases. To investigate both the role of thermodynamic anomalies and presence of distinct metastable liquid phases in supercooled water on ice nucleation, we employ density functional theoretical approach to find nucleation free energy barrier in different regions of phase diagram. The theory makes a number of striking predictions, such as a dramatic lowering of nucleation barrier due to presence of a metastable intermediate phase and crossover in the dependence of free energy barrier on temperature near liquid-liquid critical point. These predictions can be tested by computer simulations as well as by controlled experiments.
Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and le ngth scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte Carlo (MC) simulations to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB) which for a specific set of parameters sustains three solid phases: honeycomb, oblique and triangular. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by heating. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common believe and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as linear strip followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions which enables the dominance of stabilizing energy over the destabilizing surface energy. The nuclei of stable oblique phase are wetted by intermediate order particles which minimizes the surface free energy. We observe different pathways for pressure and temperature induced transitions.
In many systems, nucleation of a stable solid may occur in the presence of other (often more than one) metastable phases. These may be polymorphic solids or even liquid phases. In such cases, nucleation of the solid phase from the melt may be facilit ated by the metastable phase because the latter can wet the interface between the parent and the daughter phases, even though there may be no signature of the existence of metastable phase in the thermodynamic properties of the parent liquid and the stable solid phase. Straightforward application of classical nucleation theory (CNT) is flawed here as it overestimates the nucleation barrier since surface tension is overestimated (by neglecting the metastable phases of intermediate order) while the thermodynamic free energy gap between daughter and parent phases remains unchanged. In this work we discuss a density functional theory (DFT) based statistical mechanical approach to explore and quantify such facilitation. We construct a simple order parameter dependent free energy surface that we then use in DFT to calculate (i) the order parameter profile, (ii) the overall nucleation free energy barrier and (iii) the surface tension between the parent liquid and the metastable solid and also parent liquid and stable solid phases. The theory indeed finds that the nucleation free energy barrier can decrease significantly in the presence of wetting. This approach can provide a microscopic explanation of Ostwald step rule and the well-known phenomenon of disappearing polymorphs that depends on temperature and other thermodynamic conditions. Theory reveals a diverse scenario for phase transformation kinetics some of which may be explored via modern nanoscopic synthetic methods.
Melting and freezing transitions in two dimensional systems are known to show highly unusual characteristics. Most of the earlier studies considered atomic systems; the melting behavior in two dimensional molecular solids is still largely unexplored. In order to understand the role of multiple energy and length scales present in molecular systems on nature of melting transition, here we report computer simulation studies of melting of a two dimensional Mercedes-Benz (MB) system. We find that the interplay between the strength of isotropic and anisotropic interactions can give rise to rich phase diagram. The computed solid-liquid phase diagram consists of isotropic liquid and two crystalline phases - honeycomb and oblique. In contradiction to the celebrated KTHNY theory, we observe strongly one step first order melting transitions for both the honeycomb and oblique solids. The defects in both solids and liquids near the transition are more complex compared to the atomic systems.
We find an interesting interplay between the range of the attractive part of the interaction potential and the extent of metastability (as measured by supersaturation) in gas-liquid nucleation. We explore and exploit this interplay to obtain new insi ght into nucleation phenomena. Just like its dependence on supersaturation (S), the free energy barrier of nucleation is found to depend strongly on the range of the interaction potential. Actually, the entire free energy surface, F(n), where n is the size of the liquid-like cluster, shows this dependence. The evidences and the reasons for this strong dependence are as follows. (i) The surface tension increases dramatically on increasing the range of interaction potential. In three dimensional Lennard-Jones system, the value of the surface tension increases from 0.494 for a cut-off of 2.5 {sigma} to 1.09 when the full range of the potential is involved. In two dimensional LJ system, the value of the line tension increases from 0.05 to 0.18, under the same variation of the potential range. (ii) The density of the gas phase at coexistence decreases while that of the liquid phase increases substantially on increasing the range of the interaction potential. (iii) As a result of the above, at a given supersaturation S, the size of the critical nucleus and the free energy barrier both increase with increase in the range of interaction potential. (iv) Surprisingly, however, we find that the functional form predicted by the classical nucleation theory (CNT) for the dependence of the free energy barrier on the size of the nucleus to remain valid except at the largest value of S studied. (v) The agreement between CNT prediction and simulated values of the barrier is supersaturation dependent and worsens with increase in the range of interaction potential, and increases above 10 kBT at the largest supersaturation that could be studied.
Nucleation at large metastability is still largely an unsolved problem, although is a problem of tremendous current interest, with wide practical value. It is well-accepted that the classical nucleation theory (CNT) fails to provide a qualitative pic ture and gives incorrect quantitative values for such quantities as activation free energy barrier and supersaturation dependence of nucleation rate, especially at large metastability. In this article, we present a powerful alternative formalism to treat nucleation at large supersaturation. This formalism goes over to the classical picture at small supersaturation where CNT is expected to be valid. The new theory is based on an extended set of order parameters in terms of k-th largest liquid-like clusters where k=1 is the largest cluster in the system, k=2 is the second largest cluster and so on. We derive an analytic expression for the free energy of formation of the k-th largest cluster which shows that at large metastability the barrier of growth for the few largest liquid-like clusters disappear, the nucleation becomes collective and the approach to the critical size occurs by barrierless diffusion in the cluster size space. The expression for the rate of barrier crossing predicts a weaker supersaturation dependence than that of CNT at large metastability. Such a cross-over behavior has indeed been observed in recent experiments but eluded an explanation till now. In order to understand the large numerical difference between simulation predictions and experimental results, we carried out a study of the dependence on the range of intermolecular interaction of both the surface tension of an equilibrium planar gas-liquid interface and the free energy barrier of nucleation. Both are found to depend significantly on the range of interaction for a Lennard-Jones potential, both in two and three dimensions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا