ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum devices may overcome limitations of classical computers in studies of nuclear structure functions and parton Wigner distributions of protons and nuclei. In this talk, we discuss a worldline approach to compute nuclear structure functions in t he high energy Regge limit of QCD using a hybrid quantum computer, by expressing the fermion determinant in the QCD path integral as a quantum mechanical path integral over $0+1$-dimensional fermionic and bosonic world-lines in background gauge fields. Our simplest example of computing the well-known dipole model result for the structure function $F_2$ in the high energy Regge limit is feasible with NISQ era technology using few qubits and shallow circuits. This example can be scaled up in complexity and extended in scope to compute structure functions, scattering amplitudes and other real-time correlation functions in QCD, relevant for example to describe non-equilibrium transport of quarks and gluons in a Quark-Gluon-Plasma.
We compute the next-to-leading order (NLO) impact factor for inclusive photon $+$dijet production in electron-nucleus (e+A) deeply inelastic scattering (DIS) at small $x$. An important ingredient in our computation is the simple structure of ``shock wave fermion and gluon propagators. This allows one to employ standard momentum space Feynman diagram techniques for higher order computations in the Regge limit of fixed $Q^2gg Lambda_{rm QCD}^2$ and $xrightarrow 0$. Our computations in the Color Glass Condensate (CGC) effective field theory include the resummation of all-twist power corrections $Q_s^2/Q^2$, where $Q_s$ is the saturation scale in the nucleus. We discuss the structure of ultraviolet, collinear and soft divergences in the CGC, and extract the leading logs in $x$; the structure of the corresponding rapidity divergences gives a nontrivial first principles derivation of the JIMWLK renormalization group evolution equation for multiparton lightlike Wilson line correlators. Explicit expressions are given for the $x$-independent $O(alpha_s)$ contributions that constitute the NLO impact factor. These results, combined with extant results on NLO JIMWLK evolution, provide the ingredients to compute the inclusive photon $+$ dijet cross-section at small $x$ to $O(alpha_s^3 ln(x))$. First results for the NLO impact factor in inclusive dijet production are recovered in the soft photon limit. A byproduct of our computation is the LO photon+ 3 jet (quark-antiquark-gluon) cross-section.
We highlight the principal results of a computation in the Color Glass Condensate effective field theory (CGC EFT) of the next-to-leading order (NLO) impact factor for inclusive photon+dijet production at Bjorken $x_{rm Bj} ll 1$ in deeply inelastic electron-nucleus (e+A DIS) collisions. When combined with extant results for next-to-leading log $x_{rm Bj}$ JIMWLK renormalization group (RG) evolution of gauge invariant two-point (dipole) and four-point (quadrupole) correlators of light-like Wilson lines, the inclusive photon+dijet e+A DIS cross-section can be determined to $sim 10$% accuracy. Our computation simultaneously provides the ingredients to compute fully inclusive DIS, inclusive photon, inclusive dijet and inclusive photon+jet channels to the same accuracy. This makes feasible quantitative extraction of many-body correlators of saturated gluons and precise determination of the saturation scale $Q_{S,A}(x_{rm Bj})$ at a future Electron-Ion Collider. An interesting feature of our NLO result is the structure of the violation of the soft gluon theorem in the Regge limit. Another is the appearance in gluon emission of time-like non-global logs which also satisfy JIMWLK RG evolution.
We outline a strategy to compute deeply inelastic scattering structure functions using a hybrid quantum computer. Our approach takes advantage of the representation of the fermion determinant in the QCD path integral as a quantum mechanical path inte gral over 0+1-dimensional fermionic and bosonic worldlines. The proper time evolution of these worldlines can be determined on a quantum computer. While extremely challenging in general, the problem simplifies in the Regge limit of QCD, where the interaction of the worldlines with gauge fields is strongly localized in proper time and the corresponding quantum circuits can be written down. As a first application, we employ the Color Glass Condensate effective theory to construct the quantum algorithm for a simple dipole model of the $F_2$ structure function. We outline further how this computation scales up in complexity and extends in scope to other real-time correlation functions.
The world-line representation of quantum field theory is a powerful framework for the computation of perturbative multi-leg Feynman amplitudes. In particular, in gauge theories, it provides an efficient way, via point particle Grassmann functional in tegrals, to compute spinor and color traces in these amplitudes. Further, semi-classical approximations to quantum mechanical world-line trajectories provide useful intuition in a wide range of dynamical problems. We develop here the world-line approach to compute deeply inelastic structure functions in the small x Regge limit of QCD. In particular, in a shockwave approximation valid in this limit, we show how one recovers the well-known dipole model for unpolarized structure functions. In a follow-up work, we will discuss the world-line computation of polarized structure functions at small x.
We discuss an ab initio world-line approach to constructing phase space distributions in systems with internal symmetries. Starting from the Schwinger-Keldysh real time path integral in quantum field theory, we derive the most general extension of th e Wigner phase space distribution to include color and spin degrees of freedom in terms of dynamical Grassmann variables. The corresponding Liouville distribution for colored particles, which obey Wongs equation, has only singlet and octet components, while higher moments are fully constrained by the Grassmann algebra. The extension of phase space dynamics to spin is represented by a generalization of the Pauli-Lubanski vector; its time evolution via the Bargmann-Michel-Telegdi equation also follows from the phase space trajectories of the underlying Grassmann coordinates. Our results for the Liouville phase space distribution in systems with both spin and color are of interest in fields as diverse as chiral fluids, finite temperature field theory and polarized parton distribution functions. We also comment on the role of the chiral anomaly in the phase space dynamics of spinning particles.
In a quantum field theory, apparent thermalization can be a consequence of entanglement as opposed to scatterings. We discuss here how this can help to explain open puzzles such as the success of thermal models in electron-positron collisions. It tur ns out that an expanding relativistic string described by the Schwinger model (which also underlies the Lund model) has at early times an entanglement entropy that is extensive in rapidity. At these early times, the reduced density operator is of thermal form, with an entanglement temperature $T_tau=hbar/(2pi k_Btau)$, even in the absence of any scatterings.
We compute the $J/psi$ polarization observables $lambda_theta$, $lambda_phi$, $lambda_{thetaphi}$ in a Color Glass Condensate (CGC) + nonrelativistic QCQ (NRQCD) formalism that includes contributions from both color singlet and color octet intermedia te states. Our results are compared to low $p_T$ data on $J/psi$ polarization from the LHCb and ALICE experiments on proton-proton collisions at center-of-mass energies of $sqrt{s}=7$ TeV and 8 TeV. Our CGC+NRQCD computation provides a better description of data for $p_T leq 15$ GeV relative to extant next-to-leading (NLO) calculations within the collinear factorization framework. These results suggest that higher order computations in the CGC+NRQCD framework have the potential to greatly improve the accuracy of extracted values of the NRQCD universal long distance matrix elements.
We construct a general QCD light front formalism to compute many-body color charge correlators in the proton. These form factors can be extracted from deeply inelastic scattering measurements of exclusive final states in analogy to electromagnetic fo rm factors extracted in elastic electron scattering experiments. Particularly noteworthy is the potential to extract a novel Odderon form factor, either indirectly from exclusive $J/Psi$ measurements, or directly from exclusive measurements of the $eta_c$ or tensor mesons at large Bjorken x. Besides the intrinsic information conveyed by these color charge correlators on the spatio-temporal tomography at the sub-femtoscopic scale at large x, the corresponding cumulants extend the domain of validity of McLerran-Venugopalan type weight functionals from small x and large nuclei to nucleons and light nuclei at large $x$, as well as to non-zero momentum transfer. This may significantly reduce nonperturbative systematic uncertainties in the initial conditions for QCD evolution equations at small $x$ and could be of strong relevance for the phenomenology of present and future collider experiments.
We discuss the production of $D$-mesons and $J/psi$ in high multiplicity proton-proton and proton-nucleus collisions within the Color-Glass-Condensate (CGC) framework. We demonstrate that the modification of the LHC data on $D$ and $J/psi$ yields in high multiplicity events relative to minimum bias events arise from a significant enhancement of the gluon saturation scales of the corresponding rare parton configurations in the colliding protons and nuclei. For a given event multiplicity, we predict these relative yields to be energy independent from $sqrt{s}=200$ GeV at RHIC to the highest LHC energies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا