ﻻ يوجد ملخص باللغة العربية
We outline a strategy to compute deeply inelastic scattering structure functions using a hybrid quantum computer. Our approach takes advantage of the representation of the fermion determinant in the QCD path integral as a quantum mechanical path integral over 0+1-dimensional fermionic and bosonic worldlines. The proper time evolution of these worldlines can be determined on a quantum computer. While extremely challenging in general, the problem simplifies in the Regge limit of QCD, where the interaction of the worldlines with gauge fields is strongly localized in proper time and the corresponding quantum circuits can be written down. As a first application, we employ the Color Glass Condensate effective theory to construct the quantum algorithm for a simple dipole model of the $F_2$ structure function. We outline further how this computation scales up in complexity and extends in scope to other real-time correlation functions.
Quantum devices may overcome limitations of classical computers in studies of nuclear structure functions and parton Wigner distributions of protons and nuclei. In this talk, we discuss a worldline approach to compute nuclear structure functions in t
We study the use of deep learning techniques to reconstruct the kinematics of the deep inelastic scattering (DIS) process in electron-proton collisions. In particular, we use simulated data from the ZEUS experiment at the HERA accelerator facility, a
We consider deep inelastic scattering (DIS) on a large nucleus described as an extremal RN-AdS black hole using the holographic principle. Using the R-current correlators we determine the structure functions as a function Bjorken-x, and map it on a f
We consider deep inelastic scattering (DIS) on a dense nucleus described as an extremal RN-AdS black hole with holographic quantum fermions in the bulk. We evaluate the 1-loop fermion contribution to the R-current on the charged black hole, and map i
We calculate the cross section of the electron scattering from a bound nucleon within light-front approximation. The advantage of this approximation is the possibility of systematic account for the off-shell effects which become essential in high ene