ترغب بنشر مسار تعليمي؟ اضغط هنا

We report a technique based on Fresnel diffraction with white illumination that permits the resolution of capillary surface patterns of less than 100 nanometers. We investigate Rayleigh Plateaux like instability on a viscoelastic capillary bridge and show that we can overcome the resolution limit of optical microscopy. The viscoelastic filaments are approximately 20 microns thick at the end of the thinning process when the instability sets in. The wavy distortions grow exponentially in time and the pattern is resolved by an image treatment that is based on an approximation of the measured rising flank of the first Fresnel peak.
A fluid dynamics video of the break up of a droplet of saliva is shown. First a viscoelastic filament is formed and than the blistering of this filament is shown. Finally, a flow induced phase separation takes place nanometer sized solid fiber remains that consist out of the biopolymers.
The nanoscale fluctuation dynamics of semi dilute high molecular weight polymer solutions of Polyethylenoxide (PEO) in D2O under non-equilibrium flow conditions were studied by the neutron spin-echo technique. The sample cell was in contraction flow geometry and provided a pressure driven flow with a high elongational component that stretched the polymers most efficiently. The experiments suggest that the mobility on the scale of a few monomers, comparable to the Kuhn segment length, becomes highly anisotropic and is enhanced perpendicular to the flow direction. Diffraction data show a weak structural correlation along the chains on a length scale of about 17 Angstroems, which might be related to the Kuhn length in this system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا