ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the magneto-conductivity analysis of Bi2Se3 single crystal at different temperatures in a magnetic field range of 14Tesla. The single crystals are grown by the self-flux method and characterized through X-ray diffraction, Scanning Electron Microscopy, and Raman Spectroscopy. The single crystals show magnetoresistance (MR) of around 380 percent at a magnetic field of 14T and a temperature of 5K. The Hikami Larkin Nagaoka (HLN) equation has been used to fit the magneto-conductivity (MC) data. However, the HLN fitted curve deviates at higher magnetic fields above 1 Tesla, suggesting that the role of surface driven conductivity suppresses with an increasing magnetic field. This article proposes a speculative model comprising of surface-driven HLN and added quantum diffusive and bulk carriers driven classical terms. The model successfully explains the MC of the Bi2Se3 single crystal at various temperatures (5 to 200K) and applied magnetic fields (up to 14Tesla).
Here, we report the magneto-conductivity (up to 14Tesla and down to 5K) analysis of Bi2Te3 single-crystal. A sharp magneto-conductivity (MC) rise (inverted v-type cusp) is observed near H=0 due to the weak antilocalization (WAL) effect, while a linea r curve is observed at higher fields. We account for magneto-conductivity (MC) over the entire range of applied magnetic fields of up to 14Tesla and temperatures from 100K to 5K in a modified HLN modelling (addition of quadratic (BH2) through quantum and classical components involvement. The additional term BH2 reveals a gradual change of a (HLN parameter) from -0.421(6) to -0.216(1) as the temperature increases from 5 to 100K. The phase coherence length Lphi obtained from both conventional and modified modelling decreased with increasing temperature but remains more protracted than the mean free path (L) of electrons. It shows the quantum phase coherence effect dominates at high temperature.
We report the magneto-conductivity analysis at different temperatures under magnetic field of up to 5Tesla of a well characterized Bi2Te3 crystal. Details of crystal growth and various physical properties including high linear magneto resistance are already reported by some of us. To elaborate upon the transport properties of Bi2Te3 crystal, the magneto conductivity is fitted to the known HLN (Hikami Larkin Nagaoka) equation and it is found that the conduction mechanism is dominated by both surface driven WAL (weak anti localization) and the bulk WL states. The value of HLN equation coefficient signifying the type of localization (WL, WAL or both WL and WAL) falls within the range of -0.5 to -1.5. In our case, the low field (0.25Tesla) fitting of studied crystal exhibited value close to -0.86 for studied temperatures of up to 50K, indicating both WAL and WL contributions. The phase coherence length is found to decrease from 98.266 to 40.314nm with increasing temperature. Summarily, the short letter reports the fact that bulk Bi2Te3 follows the HLN equation and quantitative analysis of the same facilitates to know the quality of studied crystal in terms of WAL to WL contributions and thus the surface to bulk conduction ratio.
In this letter, we report growth and characterization of bulk Bi2Se3 single crystals. The studied Bi2Se3 crystals are grown by self flux method through solid state reaction from high temperature (950C) melt of constituent elements and slow cooling (2 C/hour). The resultant crystals are shiny and grown in [00l] direction, as evidenced from surface XRD. Detailed Reitveld analysis of PXRD (powder x-ray diffraction) of the crystals showed that these are crystallized in rhombohedral crystal structure with space group of R3m (D5) and the lattice parameters are a = 4.14(2)A, b = 4.14 (2) A and c = 28.7010(7) A. Temperature versus resistivity (R-T) plots revealed metallic conduction down to 2K, with typical room temperature resistivity (R300K) of around 0.53 mohm-cm and residual resistivity of 0.12 mohm-cm. Resistivity under magnetic field ] measurements exhibited large +Ve magneto resistance right from 2K to 200K. Isothermal magneto resistance [RH] measurements at 2K, 100K and 200K exhibited magneto resistance (MR) of up to 240, 130 and 60 percent respectively at 14 Tesla. Further the MR plots are non saturating and linear with field at all temperature. At 2K the MR plots showed clear quantum oscillations at above say 10 Tesla applied field. Also the Kohler plots i.e., were seen consolidating on one plot. Interestingly, the studied Bi2Se3 single crystal exhibited the Shubnikov-de Haas oscillations (SdH) at 2K under different applied magnetic fields ranging from 4Tesla to 14 Tesla
We report synthesis, structural details and electrical transport properties of topological insulator Bi2Te3. The single crystalline specimens of Bi2Te3 are obtained from high temperature (950C) melt and slow cooling (2C/hour). The resultant crystals were shiny, one piece (few cm) and of bright silver color. The Bi2Te3 crystal is found to be perfect with clear [00l] alignment. The powder XRD pattern being carried out on crushed crystals showed that Bi2Te3 crystallized in R3m symmetry with a = b = 4.3866(2) A, c = 30.4978(13) A and Gamma = 120degree. The Bi position is refined to (0, 0, 0.4038 (9)) at Wyckoff position 6c and of Te are (0, 0, 0) at Wyckoff position 3a and at (0, 0, 0.2039(8)) at 6c. Ambient pressure and low temperature (down to 2K) electrical transport measurements revealed metallic behavior. Magneto transport measurements under magnetic field showed huge non saturating magneto resistance (MR) reaching up to 250% at 2.5K and under 50KOe field. Summarily, the short communication clearly demonstrates that Bi2Te3 topological insulator exhibit non-saturating large positive MR at low temperature of say below 10K. The non saturating MR is seen right up to room temperature albeit with much decreased magnitude. Worth mentioning is the fact that these crystals are bulk in nature and hence the anomalous MR is clearly an intrinsic property and not due to the size effect as reported for nano-wires or thin films of the same.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا