ﻻ يوجد ملخص باللغة العربية
We report the magneto-conductivity analysis at different temperatures under magnetic field of up to 5Tesla of a well characterized Bi2Te3 crystal. Details of crystal growth and various physical properties including high linear magneto resistance are already reported by some of us. To elaborate upon the transport properties of Bi2Te3 crystal, the magneto conductivity is fitted to the known HLN (Hikami Larkin Nagaoka) equation and it is found that the conduction mechanism is dominated by both surface driven WAL (weak anti localization) and the bulk WL states. The value of HLN equation coefficient signifying the type of localization (WL, WAL or both WL and WAL) falls within the range of -0.5 to -1.5. In our case, the low field (0.25Tesla) fitting of studied crystal exhibited value close to -0.86 for studied temperatures of up to 50K, indicating both WAL and WL contributions. The phase coherence length is found to decrease from 98.266 to 40.314nm with increasing temperature. Summarily, the short letter reports the fact that bulk Bi2Te3 follows the HLN equation and quantitative analysis of the same facilitates to know the quality of studied crystal in terms of WAL to WL contributions and thus the surface to bulk conduction ratio.
Here, we report the magneto-conductivity (up to 14Tesla and down to 5K) analysis of Bi2Te3 single-crystal. A sharp magneto-conductivity (MC) rise (inverted v-type cusp) is observed near H=0 due to the weak antilocalization (WAL) effect, while a linea
We report synthesis, structural details and electrical transport properties of topological insulator Bi2Te3. The single crystalline specimens of Bi2Te3 are obtained from high temperature (950C) melt and slow cooling (2C/hour). The resultant crystals
Topological superconductivity is one of most fascinating properties of topological quantum matters that was theoretically proposed and can support Majorana Fermions at the edge state. Superconductivity was previously realized in a Cu-intercalated Bi2
We report the magneto-conductivity analysis of Bi2Se3 single crystal at different temperatures in a magnetic field range of 14Tesla. The single crystals are grown by the self-flux method and characterized through X-ray diffraction, Scanning Electron
We consider a two-component Fermi gas in the presence of spin imbalance, modeling the system in terms of a one-dimensional attractive Hubbard Hamiltonian initially in the presence of a confining trap potential. With the aid of the time-evolving block