ترغب بنشر مسار تعليمي؟ اضغط هنا

134 - R.O. Kuzian , V.V. Laguta , 2013
We show that a superstructure of antiferromagnetically interacting Fe$^{3+}$ ($S=5/2$) ions in double perovskites AFe$_{1/2}$M$_{1/2}$O$_{3}$ exhibits a ferrimagnetic ordering below $T_{fe} approx 5.6J_1$ ($J_1/k_B sim 50$~K), which is close to room temperature. Small clusters of the same structure exhibit a superparamagnetic behavior at $T lesssim T_{fe}$. The possibility of formation of such clusters explains the room-temperature (superpara)magnetism in 3$d$-metal based oxides.
We show that the magnetism of double perovskite AFe_{1/2}M_{1/2}O_3 systems may be described by the Heisenberg model on the simple cubic lattice, where only half of sites are occupied by localized magnetic moments. The nearest-neighbor interaction J_ 1 is more than 20 times the next-nearest neighbor interaction J_2, the third-nearest interaction along the space diagonal of the cube being negligible. We argue that the variety of magnetic properties observed in different systems is connected with the variety of chemical ordering in them. We analyze six possible types of the chemical ordering in 2x2x2 supercell, and argue that the probability to find them in a real compound does not correspond to a random occupation of lattice sites by magnetic ions. The exchange J_2 rather than J_1 define the magnetic energy scale of most double perovskite compounds that means the enhanced probability of 1:1 short range ordering. Two multiferroic compounds PbFe_{1/2}M_{1/2}O_3 (M=Nb, Ta) are exceptions. We show that the relatively high temperature of antiferromagnetic transition is compatible with a layered short-range chemical order, which was recently shown to be most stable for these two compounds [I. P. Raevski, {em et al.}, Phys. Rev. B textbf{85}, 224412 (2012)]. We show also that one of the types of ordering has ferrimagnetic ground state. The clusters with short-range order of this type may be responsible for a room-temperature superparamagnetism, and may form the cluster glass at low temperatures.
Ca2Y2Cu5O10 is build up from edge-shared CuO4 plaquettes forming spin chains. From inelastic neutron scattering data we extract an in-chain nearest neighbor exchange J1 approximately -170 K and the frustrating next neighbor J2 approximately 32 K inte ractions, both significantly larger than previous estimates. The ratio alpha= J2/J1 approximately 0.19 places the system very close to the critical point alpha_c=0.25 of the J1-J2 chain, but in the ferromagnetic regime. We establish that the vicinity to criticality only marginally affects the dispersion and coherence of the elementary spin-wave-like magnetic excitations, but instead results in a dramatic T-dependence of high-energy Zhang-Rice singlet excitation intensities.
An efficient and precise thermodynamic method to extract the interchain coupling (IC) of spatially anisotropic 2D or 3D spin-1/2 systems from their empirical saturation field H_s (T=0) is proposed. Using density-matrix renormalization group, hard-cor e boson, and spin-wave theory we study how H_s is affected by an antiferromagnetic (AFM) IC between frustrated chains described in the J_1-J_2-spin model with ferromagnetic 1st and AFM 2nd neighbor in-chain exchange. A complex 3D-phase diagram has been found. For Li2CuO2 and Y2Ca2Cu5O10, we show that H_s is solely determined by the IC and predict H_s approx 61 T for the latter.Using H_s approx 55 T from our high-field pulsed measurements one reads out a weak IC for Li2CuO2 close to that from neutron scattering.
We present an inelastic neutron scattering investigation of Li2CuO2 detecting the long sought quasi-1D magnetic excitations with a large dispersion along the CuO2-chains studied up to 25 meV. The total dispersion is governed by a surprisingly large f erromagnetic (FM) nearest-neighbor exchange integral J1=-228 K. An anomalous quartic dispersion near the zone center and a pronounced minimum near (0,0.11,0.5) r.l.u. (corresponding to a spiral excitation with a pitch angle about 41 degree point to the vicinity of a 3D FM-spiral critical point. The leading exchange couplings are obtained applying standard linear spin-wave theory. The 2nd neighbor inter-chain interaction suppresses a spiral state and drives the FM in-chain ordering below the Neel temperature. The obtained exchange parameters are in agreement with the results for a realistic five-band extended Hubbard Cu 3d O 2p model and L(S)DA+U predictions.
We analyze recent measurements [R. Blinc, V. V. Laguta, B. Zalar, M. Itoh and H. Krakauer, J. Phys. : Cond. Mat., v.20, 085204 (2008)] of the electric field gradient on the oxygen site in the perovskites SrTiO3 and BaTiO3, which revealed, in agreemen t with calculations, a large difference in the EFG for these two compounds. In order to analyze the origin of this difference, we have performed density functional electronic structure calculations within the local-orbital scheme FPLO. Our analysis yields the counter-intuitive behavior that the EFG increases upon lattice expansion. Applying the standard model for perovskites, the effective two-level p-d Hamiltonian, can not explain the observed behavior. In order to describe the EFG dependence correctly, a model beyond this usually sufficient p-d Hamiltonian is needed. We demonstrate that the counter-intuitive increase of the EFG upon lattice expansion can be explained by a s-p-d model, containing the contribution of the oxygen 2s states to the crystal field on the Ti site. The proposed model extension is of general relevance for all related transition metal oxides with similar crystal structure.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا