ترغب بنشر مسار تعليمي؟ اضغط هنا

Ca2Y2Cu5O10: the first frustrated quasi-1D ferromagnet close to criticality

55   0   0.0 ( 0 )
 نشر من قبل S. -L. Drechsler
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ca2Y2Cu5O10 is build up from edge-shared CuO4 plaquettes forming spin chains. From inelastic neutron scattering data we extract an in-chain nearest neighbor exchange J1 approximately -170 K and the frustrating next neighbor J2 approximately 32 K interactions, both significantly larger than previous estimates. The ratio alpha= J2/J1 approximately 0.19 places the system very close to the critical point alpha_c=0.25 of the J1-J2 chain, but in the ferromagnetic regime. We establish that the vicinity to criticality only marginally affects the dispersion and coherence of the elementary spin-wave-like magnetic excitations, but instead results in a dramatic T-dependence of high-energy Zhang-Rice singlet excitation intensities.

قيم البحث

اقرأ أيضاً

We report on magnetic resonance studies within the magnetically ordered phase of the quasi-1D antiferromagnet LiCuVO_4. Our studies reveal a spin reorientational transition at a magnetic field H_c1 ~ 25 kOe applied within the crystallographical (ab)- plane in addition to the recently observed one at H_c2 ~75 kOe [ M.G. Banks et al., cond-mat/0608554 (2006)]. Spectra of the antiferromagnetic resonance (AFMR) along low-frequency branches can be described in the frame of a macroscopic theory of exchange-rigid planar magnetic structures. These data allow to obtain the anisotropy of the exchange interaction together with a constant of the uniaxial anisotropy. Spectra of 7Li nuclear magnetic resonance (NMR) show that, within the magnetically ordered phase of LiCuVO_4 in the low-field range H < H_c1, a planar spiral spin structure is realized with the spins lying in the (ab)-plane in agreement with neutron scattering studies of B.J. Gibson et al. [Physica B Vol. 350, 253 (2004)]. Based on NMR spectra simulations, the transition at H_c1 can well be described as a spin-flop transition, where the spin plane of the magnetically ordered structure rotates to be perpendicular to the direction of the applied magnetic field. For H > H_c2 ~ 75 kOe, our NMR spectra simulations show that the magnetically ordered structure exhibits a modulation of the spin projections along the direction of the applied magnetic field H.
The recent discovery of Spin-ice is a spectacular example of non-coplanar spin arrangements that can arise in the pyrochlore A2B2O7 structure. We present magnetic and thermodynamic studies on the metallic-ferromagnet pyrochlore Sm2Mo2O7. Our studies, carried out on oriented crystals, suggest that the Sm spins have an ordered spin-ice ground state below about T* = 15 K. The temperature- and field-evolution of the ordered spin-ice state are governed by an antiferromagnetic coupling between the Sm and Mo spins. We propose that as a consequence of a robust feature of this coupling, the tetrahedra aligned with the external field adopt a 1-in, 3-out spin structure as opposed to 3-in, 1-out in dipolar spin ices, as the field exceeds a critical value.
We present experimental and theoretical evidence that an interesting quantum many-body effect -- quasi-particle breakdown -- occurs in the quasi-one-dimensional spin-1/2 Ising-like ferromagnet CoNb$_2$O$_6$ in its paramagnetic phase at high transvers e field as a result of explicit breaking of spin inversion symmetry. We propose a quantum spin Hamiltonian capturing the essential one-dimensional physics of CoNb$_2$O$_6$ and determine the exchange parameters of this model by fitting the calculated single particle dispersion to the one observed experimentally in applied transverse magnetic fields. We present high-resolution inelastic neutron scattering measurements of the single particle dispersion which observe anomalous broadening effects over a narrow energy range at intermediate energies. We propose that this effect originates from the decay of the one particle mode into two-particle states. This decay arises from (i) a finite overlap between the one-particle dispersion and the two-particle continuum in a narrow energy-momentum range and (ii) a small misalignment of the applied field away from the direction perpendicular to the Ising axis in the experiments, which allows for non-zero matrix elements for decay by breaking the $mathbb{Z}_2$ spin inversion symmetry of the Hamiltonian.
Antiferromagnetic quantum spin systems can exhibit a transition between collinear and spiral ground states, driven by frustration. Classically this is a smooth crossover and the crossover point is termed a Lifshitz point. Quantum fluctuations change the nature of the transition. In particular it has been argued previously that in the two-dimensional (2D) case a spin liquid (SL) state is developed in the vicinity of the Lifshitz point, termed a Lifshitz SL. In the present work, using a field theory approach, we solve the Lifshitz quantum phase transition problem for the 2D frustrated XY-model. Specifically, we show that, unlike the SU(2) symmetric Lifshitz case, in the XY-model the SL exists only at the critical point. At zero temperature we calculate nonuniversal critical exponents in the Neel and in the spin spiral state and relate these to properties of the SL. We also solve the transition problem at a finite temperature and discuss the role of topological excitations.
We report on NMR studies of the quasi one--dimensional (1D) antiferromagnetic $S=1/2$ chain cuprate LiCuVO$_4$ in magnetic fields $H$ up to $mu_0H$ = 30 T ($approx 70$% of the saturation field $H_{rm sat}$). NMR spectra in fields higher than $H_{rm c 2}$ ($mu_0H_{rm c2} approx 7.5$ T) and temperatures $T<T_{rm N}$ can be described within the model of a spin-modulated phase in which the magnetic moments are aligned parallel to the applied field $H$ and their values alternate sinusoidally along the magnetic chains. Based on theoretical concepts about magnetically frustrated 1D chains, the field dependence of the modulation strength of the magnetic structure is deduced from our experiments. Relaxation time $T_2$ measurements of the $^{51}$V nuclei show that $T_2$ depends on the particular position of the probing $^{51}$V nucleus with respect to the magnetic copper moments within the 1D chains: the largest $T_2$ value is observed for the vanadium nuclei which are very next to the magnetic Cu$^{2+}$ ion with largest ordered magnetic moment. This observation is in agreement with the expectation for the spin-modulated magnetic structure. The $(H,T)$ magnetic phase diagram of LiCuVO$_4$ is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا