ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a spectroscopic and photometric study of the Double Period Variable HD170582. Based on the study of the ASAS V-band light curve we determine an improved orbital period of 16.87177 $pm$ 0.02084 days and a long period of 587 days. We disenta ngled the light curve into an orbital part, determining ephemerides and revealing orbital ellipsoidal variability with unequal maxima, and a long cycle, showing quasi-sinusoidal changes with amplitude $Delta V$= 0.1 mag. Assuming synchronous rotation for the cool stellar component and semi-detached configuration we find a cool evolved star of $M_{2}$ = 1.9 $pm$ 0.1 $M_{odot}$, $T_{2}$ = 8000 $pm$ 100 $K$ and $R_{2}$ = 15.6 $pm$ 0.2 $R_{odot}$, and an early B-type dwarf of $M_{1}$ = 9.0 $pm$ 0.2 $M_{odot}$. The B-type star is surrounded by a geometrically and optically thick accretion disc of radial extension 20.8 $pm$ 0.3 $R_{odot}$ contributing about 35% to the system luminosity at the $V$ band. Two extended regions located at opposite sides of the disc rim, and hotter than the disc by 67% and 46%, fit the light curve asymmetries. The system is seen under inclination 67.4 $pm$ 0.4 degree and it is found at a distance of 238 $pm$ 10 pc. Specially interesting is the double line nature of HeI 5875; two absorption components move in anti-phase during the orbital cycle; they can be associated with the shock regions revealed by the photometry. The radial velocity of one of the HeI 5875 components closely follows the donor radial velocity, suggesting that the line is formed in a wind emerging near the stream-disc interacting region.
129 - S.V. Zharikov 2007
Aims: We performed deep optical observations of the field of an old, fast-moving radio pulsar PSR B1133+16 in an attempt to detect its optical counterpart and a bow shock nebula. Methods: The observations were carried out using the direct imaging m ode of FORS1 at the ESO VLT/UT1 telescope in the B, R, and H_alpha bands. We also used archival images of the same field obtained with the VLT in the B band and with the Chandra/ACIS in X-rays. Results: In the B band we detected a faint (B=28.1+/-0.3) source that may be the optical counterpart of PSR B1133+16, as it is positionally consistent with the radio pulsar and with the X-ray counterpart candidate published earlier. Its upper limit in the R band implies a color index B-R <0.5, which is compatible with the index values for most pulsars identified in the optical range. The derived optical luminosity and its ratio to the X-ray luminosity of the candidate are consistent with expected values derived from a sample of pulsars detected in both spectral domains. No Balmer bow shock was detected, implying a low density of ambient matter around the pulsar. However, in the X-ray and H_alpha images we found the signature of a trail extending ~4-5 behind the pulsar and coinciding with the direction of its proper motion. If confirmed by deeper studies, this is the first time such a trail has been seen in the optical and X-ray wavelengths. Conclusions: Further observations at later epochs are necessary to confirm the identification of the pulsar by the candidates proper motion measurements.
Detailed studies of Be stars in environments with different metallicities like the Magellanic Clouds or the Galactic bulge are necessary to understand the formation and evolution mechanisms of the circumstellar disks. However, a detailed study of Be stars in the direction of the bulge of our own galaxy has not been performed until now. We report the first systematic search for Be star candidates in the direction of the Galactic Bulge. We present the catalogue, give a brief description of the stellar variability seen, and show some light curve examples. We searched for stars matching specific criteria of magnitude, color and variability in the I band. Our search was conducted on the 48 OGLE II fields of the Galactic Bulge.This search has resulted in 29053 Be star candidates, 198 of them showing periodic light variations. Nearly 1500 stars in this final sample are almost certainly Be stars, providing an ideal sample for spectroscopic multiobject follow-up studies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا