ترغب بنشر مسار تعليمي؟ اضغط هنا

We have investigated the (0001) surfaces of several hexagonal manganite perovskites by low-energy electron diffraction (LEED) in order to determine if the surface periodicity is different from that of the bulk materials. These LEED studies were condu cted using near-normal incidence geometry with a low energy electron microscope (LEEM)/LEED apparatus from room temperature to 1200 degrees Celsius and with an electron energy in the range of 15-50 eV. Diffraction patterns showed features of bulk-terminated periodicity as well as a 2times2 surface reconstruction. Possible origins for this surface reconstruction structure are discussed and comparisons are made with surface studies of other complex oxides.
Dielectric relaxation is universal in characterizing polar liquids and solids, insulators, and semiconductors, and the theoretical models are well developed. However, in high magnetic fields, previously unknown aspects of dielectric relaxation can be revealed and exploited. Here, we report low temperature dielectric relaxation measurements in lightly doped silicon in high dc magnetic fields B both parallel and perpendicular to the applied ac electric field E. For B//E, we observe a temperature and magnetic field dependent dielectric dispersion e(w)characteristic of conventional Debye relaxation where the free carrier concentration is dependent on thermal dopant ionization, magnetic freeze-out, and/or magnetic localization effects. However, for BperpE, anomalous dispersion emerges in e(w) with increasing magnetic field. It is shown that the Debye formalism can be simply extended by adding the Lorentz force to describe the general response of a dielectric in crossed magnetic and electric fields. Moreover, we predict and observe a new transverse dielectric response EH perp B perp E not previously described in magneto-dielectric measurements. The new formalism allows the determination of the mobility and the ability to discriminate between magnetic localization/freeze out and Lorentz force effects in the magneto-dielectric response.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا