ترغب بنشر مسار تعليمي؟ اضغط هنا

We use optical pump--THz probe spectroscopy at low temperatures to study the hot carrier response in thin Bi$_2$Se$_3$ films of several thicknesses, allowing us to separate the bulk from the surface transient response. We find that for thinner films the photoexcitation changes the transport scattering rate and reduces the THz conductivity, which relaxes within 10 picoseconds (ps). For thicker films, the conductivity increases upon photoexcitation and scales with increasing both the film thickness and the optical fluence, with a decay time of approximately 5 ps as well as a much higher scattering rate. These different dynamics are attributed to the surface and bulk electrons, respectively, and demonstrate that long-lived mobile surface photo-carriers can be accessed independently below certain film thicknesses for possible optoelectronic applications.
Kink bound states in the one dimensional ferromagnetic Ising chain compound CoNb$_2$O$_6$ have been studied using high resolution time-domain terahertz spectroscopy in zero applied magnetic field. When magnetic order develops at low temperature, nine bound states of kinks become visible. Their energies can be modeled exceedingly well by the Airy function solutions to a 1D Schrodinger equation with a linear confining potential. This sequence of bound states terminates at a threshold energy near two times the energy of the lowest bound state. Above this energy scale we observe a broad feature consistent with the onset of the two particle continuum. At energies just below this threshold we observe a prominent excitation that we interpret as a novel bound state of bound states -- two pairs of kinks on neighboring chains.
Topological insulators (TIs) are newly discovered states of matter with robust metallic surface states protected by the topological properties of the bulk wavefunctions. A quantum phase transition (QPT) from a TI to a conventional insulator and a cha nge in topological class can only occur when the bulk band gap closes. In this work, we have utilized time-domain terahertz spectroscopy (TDTS) to investigate the low frequency conductance in (Bi$_{1-x}$In$_x$)$_2$Se$_3$ as we tune through this transition by indium substitution. Above certain substitution levels we observe a collapse in the transport lifetime that indicates the destruction of the topological phase. We associate this effect with the threshold where states from opposite surfaces hybridize. The substitution level of the threshold is thickness dependent and only asymptotically approaches the bulk limit $x approx 0.06$ where a maximum in the mid-infrared absorption is exhibited. This absorption can be identified with the bulk band gap closing and a change in topological class. The correlation length associated with the QPT appears as the evanescent length of the surface states. The observation of the thickness-dependent collapse of the transport lifetime shows the unusual role that finite size effects play in this topological QPT.
We present high precision measurements of polarization rotations in the frequency range from 0.1 to 2.5 THz using a polarization modulation technique. A motorized stage rotates a polarizer at ~80 Hz, and the resulting modulation of the polarization i s measured by a lock-in technique. We achieve an accuracy of 0.05{deg} (900 {mu}rad) and a precision of 0.02{deg} (350 {mu}rad) for small rotation angles. A detailed mathematical description of the technique is presented, showing its ability to fully characterize elliptical polarizations from 0.1 to 2.5 THz.
We present time-domain THz spectroscopy data of a thin film of the Kondo-lattice antiferromagnet CeCu$_2$Ge$_2$. The low frequency complex conductivity has been obtained down to temperatures below the onset of magnetic order. At low temperatures a na rrow Drude-like peak forms, which is similar to ones found in other heavy fermion compounds that do not exhibit magnetic order. Using this data in conjunction with DC resistivity measurements, we obtain the frequency dependence of the scattering rate and effective mass through an extended Drude model analysis. The zero frequency limit of this analysis yields evidence for large mass renormalization even in the magnetic state, the scale of which agrees closely with that obtained from thermodynamic measurements.
The origin of electromagnon excitations in cycloidal textit{R}MnO$_3$ is explained in terms of the Heisenberg coupling between spins despite the fact that the static polarization arises from the much weaker Dzyaloshinskii-Moriya (DM) exchange interac tion. We present a model that incorporates structural characteristics of this family of manganites that is confirmed by far infrared transmission data as a function of temperature and magnetic field and inelastic neutron scattering results. A deep connection is found between the magnetoelectric dynamics of the spiral phase and the static magnetoelectric coupling in the collinear E-phase of this family of manganites.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا