ترغب بنشر مسار تعليمي؟ اضغط هنا

77 - M. Xu , Li-Min Wang , R. Peng 2013
With angle-resolved photoemission spectroscopy, we studied the electronic structure of TaFe$_{1.23}$Te$_3$, which is a two-leg spin ladder compound with a novel antiferromagnetic ground state. Quasi-two-dimensional Fermi surface is observed, indicati ng sizable inter-ladder hopping, which would facilitate the in-plane ferromagnetic ordering through double exchange interactions. Moreover, an energy gap is not observed at the Fermi surface in the antiferromagnetic state. Instead, the shifts of various bands have been observed. Combining these observations with density-functional-theory calculations, we propose that the large scale reconstruction of the electronic structure, caused by the interactions between the coexisting itinerant electrons and local moments, is most likely the driving force behind the magnetic transition. TaFe$_{1.23}$Te$_3$ thus provides a simpler system that contains similar ingredients as the parent compounds of iron-based superconductors, which yet could be readily modeled and understood.
196 - R. Peng , X. P. Shen , X. Xie 2013
Single-layer FeSe films with extremely expanded in-plane lattice constant of 3.99A are fabricated by epitaxially growing FeSe/Nb:SrTiO3/KTaO3 heterostructures, and studied by in situ angle-resolved photoemission spectroscopy. Two elliptical electron pockets at the Brillion zone corner are resolved with negligible hybridization between them, indicating the symmetry of the low energy electronic structure remains intact as a free-standing single-layer FeSe, although it is on a substrate. The superconducting gap closes at a record high temperature of 70K for the iron based superconductors. Intriguingly, the superconducting gap distribution is anisotropic but nodeless around the electron pockets, with minima at the crossings of the two pockets. Our results put strong constraints on the current theories, and support the coexistence of both even and odd parity spin-singlet pairing channels as classified by the lattice symmetry.
We report the first detection of hydrogen fluoride (HF) toward a high redshift quasar. Using the Caltech Submillimeter Observatory (CSO) we detect the HF J = 1 - 0 transition in absorption toward the Cloverleaf, a broad absorption line (BAL) quasi-st ellar object (QSO) at z=2.56. The detection is statistically significant at the ~ 6 sigma level. We estimate a lower limit of 4 times 1014 cm-2 for the HF column density and using a previous estimate of the hydrogen column density, we obtain a lower limit of 1.7 times 10-9 for the HF abundance. This value suggests that, assuming a Galactic N(HF)/NH ratio, HF accounts for at least ~10% of the fluorine in the gas phase along the line of sight to the Cloverleaf quasar. This observation corroborates the prediction that HF should be a good probe of the molecular gas at high redshift. Measurements of the HF abundance as a function of redshift are urgently needed to better constrain the fluorine nucleosynthesis mechanism(s).
190 - T. velusamy , R. Peng , D. Li 2008
To study the evolution of high mass cores, we have searched for evidence of collapse motions in a large sample of starless cores in the Orion molecular cloud. We used the Caltech Submillimeter Observatory telescope to obtain spectra of the optically thin (H13CO+) and optically thick (HCO+) high density tracer molecules in 27 cores with masses $>$ 1 Ms. The red- and blue-asymmetries seen in the line profiles of the optically thick line with respect to the optically thin line indicate that 2/3 of these cores are not static. We detect evidence for infall (inward motions) in 9 cores and outward motions for 10 cores, suggesting a dichotomy in the kinematic state of the non-static cores in this sample. Our results provide an important observational constraint on the fraction of collapsing (inward motions) versus non-collapsing (re-expanding) cores for comparison with model simulations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا