ترغب بنشر مسار تعليمي؟ اضغط هنا

We describe the pre-OmegaTranS project, a deep survey for transiting extra-solar planets in the Carina region of the Galactic Disk. In 2006-2008 we observed a single dense stellar field with a very high cadence of ~2min using the ESO Wide Field Image r at the La Silla Observatory. Using the Astronomical Wide-field System for Europe and the Munich Difference Imaging Analysis pipeline, a module that has been developed for this project, we created the light curves of 16000 stars with more than 4000 data points which we searched for periodic transit signals using a box-fitting least-squares detection algorithm. All light curves are publicly available. In the course of the pre-OmegaTranS project we identified two planet candidates - POTS-1b and POTS-C2b - which we present in this work. With extensive follow-up observations we were able to confirm one of them, POTS-1b, a hot Jupiter transiting a mid-K dwarf. The planet has a mass of 2.31+-0.77M_Jup and a radius of 0.94+-0.04R_Jup and a period of P=3.16d. The host star POTS-1 has a radius of 0.59+-0.02R_Sun and a mass of 0.70+-0.05M_Sun. Due to its low apparent brightness of I=16.1mag the follow-up and confirmation of POTS-1b was particularly challenging and costly.
114 - X. Mazzalay 2012
We present the first results of an analysis of the properties of the molecular gas in the nuclear regions (r < 300 pc) of a sample of six nearby galaxies, based on new high spatial resolution observations obtained in the K-band with the near-infrared integral field spectrograph SINFONI at the Very Large Telescope. We derive two-dimensional distributions of the warm molecular and ionized gas from the H2, Br_gamma and HeI emission lines present in the spectra of the galaxies. We find a range of morphologies, including bar- and ring-like distributions and either centrally peaked or off-centre emission. The morphologies of the molecular and the ionized gas are not necessarily coincident. The observed emission-line ratios point towards thermal processes as the principal mechanism responsible for the H2 excitation in the nuclear and circumnuclear regions of the galaxies, independently of the presence of an active nucleus. We find that a rescaling of the H2 2.12 microns emission-line luminosity by a factor beta~1200 gives a good estimate (within a factor of 2) of the total (cold) molecular gas mass. The galaxies of the sample contain large quantities of molecular gas in their centres, with total masses in the ~ 105 - 108 Msol range. Never the less, these masses correspond to less than 3 per cent of the stellar masses derived for the galaxies in these regions, indicating that the presence of gas should not affect black hole mass estimates based on the dynamical modelling of the stars. The high-spatial resolution provided by the SINFONI data allowed us to resolve a circumnuclear ring (with a radius of ~270 pc) in the galaxy NGC 4536. The measured values of the Br_gamma equivalent width and the HeI/Br_gamma emission-line ratio suggests that bursts of star formation occurred throughout this ring as recently as 6.5 Myr ago.
We describe the Munich Difference Imaging Analysis pipeline that we developed and implemented in the framework of the Astro-WISE package to automatically measure high precision light curves of a large number of stellar objects using the difference im aging approach. Combined with programs to detect time variability, this software can be used to search for planetary systems or binary stars with the transit method and for variable stars of different kinds. As a first scientific application, we discuss the data reduction and analysis performed with Astro-WISE on the pre-OmegaTranS data set, that we collected during a monitoring campaign of a dense stellar field with the Wide Field Imager at the ESO 2.2m telescope.
This work aims to study the distribution of luminous and dark matter in Coma early-type galaxies. Dynamical masses obtained under the assumption that mass follows light do not match with the masses of strong gravitational lens systems of similar velo city dispersions. Instead, dynamical fits with dark matter halos are in good agreement with lensing results. We derive mass-to-light ratios of the stellar populations from Lick absorption line indices, reproducing well the observed galaxy colours. Even in dynamical models with dark matter halos the amount of mass that follows the light increases more rapidly with galaxy velocity dispersion than expected for a constant stellar initial mass function (IMF). While galaxies around sigma ~ 200 km/s are consistent with a Kroupa IMF, the same IMF underpredicts luminous dynamical masses of galaxies with sigma ~ 300 km/s by a factor of two and more. A systematic variation of the stellar IMF with galaxy velocity dispersion could explain this trend with a Salpeter IMF for the most massive galaxies. If the IMF is instead constant, then some of the dark matter in high velocity dispersion galaxies must follow a spatial distribution very similar to that of the light. A combination of both, a varying IMF and a component of dark matter that follows the light is possible as well. For a subsample of galaxies with old stellar populations we show that the tilt in the fundamental plane can be explained by systematic variations of the total (stellar + dark) mass inside the effective radius. We tested commonly used mass estimator formulae, finding them accurate at the 20-30% level.
92 - T. Valentinuzzi 2010
We find a significant number of massive and compact galaxies in clusters from the ESO Distant Clusters Survey (EDisCS) at 0.4<z<1. They have similar stellar masses, ages, sizes and axial ratios to local z~0.04 compact galaxies in WINGS clusters, and to z=1.4-2 massive and passive galaxies found in the general field. If non-BCG cluster galaxies of all densities, morphologies and spectral types are considered, the median size of EDisCS galaxies is only a factor 1.18 smaller than in WINGS. We show that for morphologically selected samples, the morphological evolution taking place in a significant fraction of galaxies during the last Gyrs may introduce an apparent, spurious evolution of size with redshift, which is actually due to intrinsic differences in the selected samples. We conclude that the median mass-size relation of cluster galaxies does not evolve significantly from z~0.7 to z~0.04. In contrast, the masses and sizes of BCGs and galaxies with M*>4x10^11 Msun have significantly increased by a factor of 2 and 4, respectively, confirming the results of a number of recent works on the subject. Our findings show that progenitor bias effects play an important role in the size-growth paradigm of massive and passive galaxies.
We use oblate axisymmetric dynamical models including dark halos to determine the orbital structure of intermediate mass to massive Coma early-type galaxies. We find a large variety of orbital compositions. Averaged over all sample galaxies the unord ered stellar kinetic energy in the azimuthal and the radial direction are of the same order, but they can differ by up to 40 percent in individual systems. In contrast, both for rotating and non-rotating galaxies the vertical kinetic energy is on average smaller than in the other two directions. This implies that even most of the rotating ellipticals are flattened by an anisotropy in the stellar velocity dispersions. Using three-integral axisymmetric toy models we show that flattening by stellar anisotropy maximises the entropy for a given density distribution. Collisionless disk merger remnants are radially anisotropic. The apparent lack of strong radial anisotropy in observed early-type galaxies implies that they may not have formed from mergers of disks unless the influence of dissipational processes was significant.
Axisymmetric, orbit-based dynamical models are used to derive dark matter scaling relations for Coma early-type galaxies. From faint to bright galaxies halo core-radii and asymptotic circular velocities increase. Compared to spirals of the same brigh tness, the majority of Coma early-types -- those with old stellar populations -- have similar halo core-radii but more than 2 times larger asymptotic halo velocities. The average dark matter density inside 2 reff decreases with increasing luminosity and is 6.8 times larger than in disk galaxies of the same B-band luminosity. Compared at the same stellar mass, dark matter densities in ellipticals are 13.5 times higher than in spirals. Different baryon concentrations in ellipticals and spirals cannot explain the higher dark matter density in ellipticals. Instead, the assembly redshift (1+z) of Coma early-type halos is likely about two times larger than of comparably bright spirals. Assuming that local spirals typically assemble at a redshift of one, the majority of bright Coma early-type galaxy halos must have formed around z = 2-3. For about half of our Coma galaxies the assembly redshifts match with constraints derived from stellar populations. We find dark matter densities and estimated assembly redshifts of our observed Coma galaxies in reasonable agreement with recent semi-analytic galaxy formation models.
The radio galaxy Fornax A (NGC 1316) is a prominent merger remnant in the outskirts of the Fornax cluster. Its giant radio lobes suggest the presence of a powerful AGN and thus a central supermassive black hole (SMBH). We present high-resolution adap tive optics assisted integral-field data of Fornax A, taken with SINFONI at the Very Large Telescope in the K band. We use axisymmetric orbit models to determine the mass of the SMBH in the centre of Fornax A. The three-dimensional nature of our data provides the possibility to directly test the consistency of the data with axisymmetry by modelling each of the four quadrants separately. According to our dynamical models, consistent SMBH masses and dynamical Ks band mass-to-light ratios are obtained for all quadrants, with <M_BH>=1.3x10^8 M_odot (rms(M_BH)=0.4x10^8 Msun) and <M/L>=0.68 (rms(M/L)=0.03), confirming the assumption of axisymmetry. For the folded and averaged data we find M_BH=(1.5+0.75-0.8)x10^8 Msun and M/L=(0.65+0.075-0.05) (3-sigma errors). Thus the black-hole mass of Fornax A is consistent within the error with the Tremaine (2002) M-sigma relation, but is a factor ~4 smaller than expected from its bulge mass and the Marconi&Hunt (2003) relation.
88 - E. M. Corsini 2007
The long-slit spectra obtained along the minor axis, offset major axis and diagonal axis are presented for 12 E and S0 galaxies of the Coma cluster drawn from a magnitude-limited sample studied before. The rotation curves, velocity dispersion profile s and the H_3 and H_4 coefficients of the Hermite decomposition of the line of sight velocity distribution are derived. The radial profiles of the Hbeta, Mg, and Fe line strength indices are measured too. In addition, the surface photometry of the central regions of a subsample of 4 galaxies recently obtained with Hubble Space Telescope is presented. The data will be used to construct dynamical models of the galaxies and study their stellar populations.
Dynamical models for 17 Coma early-type galaxies are presented. The galaxy sample consists of flattened, rotating as well as non-rotating early-types including cD and S0 galaxies with luminosities between M=-18.79 and M=-22.56. Kinematical long-slit observations cover at least the major and minor axis and extend to 1-4 effective radii. Axisymmetric Schwarzschild models are used to derive stellar mass-to-light ratios and dark halo parameters. In every galaxy models with a dark matter halo match the data better than models without. The statistical significance is over 95 percent for 8 galaxies, around 90 percent for 5 galaxies and for four galaxies it is not significant. For the highly significant cases systematic deviations between observed and modelled kinematics are clearly seen; for the remaining galaxies differences are more statistical in nature. Best-fit models contain 10-50 percent dark matter inside the half-light radius. The central dark matter density is at least one order of magnitude lower than the luminous mass density. The central phase-space density of dark matter is often orders of magnitude lower than in the luminous component, especially when the halo core radius is large. The orbital system of the stars along the major-axis is slightly dominated by radial motions. Some galaxies show tangential anisotropy along the minor-axis, which is correlated with the minor-axis Gauss-Hermite coefficient H4. Changing the balance between data-fit and regularisation constraints does not change the reconstructed mass structure significantly. Model anisotropies tend to strengthen if the weight on regularisation is reduced, but the general property of a galaxy to be radially or tangentially anisotropic, respectively, does not change. (abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا