ترغب بنشر مسار تعليمي؟ اضغط هنا

425 - E. Roediger 2014
Elliptical galaxies moving through the intra-cluster medium (ICM) are progressively stripped of their gaseous atmospheres. X-ray observations reveal the structure of galactic tails, wakes, and the interface between the galactic gas and the ICM. This fine-structure depends on dynamic conditions (galaxy potential, initial gas contents, orbit in the host cluster), orbital stage (early infall, pre-/post-pericenter passage), as well as on the still ill-constrained ICM plasma properties (thermal conductivity, viscosity, magnetic field structure). Paper I describes flow patterns and stages of inviscid gas stripping. Here we study the effect of a Spitzer-like temperature dependent viscosity corresponding to Reynolds numbers, Re, of 50 to 5000 with respect to the ICM flow around the remnant atmosphere. Global flow patterns are independent of viscosity in this Reynolds number range. Viscosity influences two aspects: In inviscid stripping, Kelvin-Helmholtz instabilities (KHIs) at the sides of the remnant atmosphere lead to observable horns or wings. Increasing viscosity suppresses KHIs of increasing length scale, and thus observable horns and wings. Furthermore, in inviscid stripping, stripped galactic gas can mix with the ambient ICM in the galaxys wake. This mixing is suppressed increasingly with increasing viscosity, such that viscously stripped galaxies have long X-ray bright, cool wakes. We provide mock X-ray images for different stripping stages and conditions. While these qualitative results are generic, we tailor our simulations to the Virgo galaxy M89 (NGC 4552), where Re~ 50 corresponds to a viscosity of 10% of the Spitzer level. Paper III compares new deep Chandra and archival XMM-Newton data to our simulations.
233 - E. Roediger 2014
Elliptical cluster galaxies are progressively stripped of their atmospheres due to their motion through the intra-cluster medium (ICM). Deep X-ray observations reveal the fine-structure of the galaxys remnant atmosphere and its gas tail and wake. Thi s fine-structure depends on dynamic conditions (galaxy potential, initial gas contents, orbit through the host cluster), orbital stage (early infall, pre-/post-pericenter passage), and ICM plasma properties (thermal conductivity, viscosity, magnetic field structure). We aim to disentangle dynamic and plasma effects in order to use stripped ellipticals as probes of ICM plasma properties. This first paper of a series investigates the hydrodynamics of progressive gas stripping by means of inviscid hydrodynamical simulations. We distinguish a long-lasting initial relaxation phase and a quasi-steady stripping phase. During quasi-steady stripping, the ICM flow around the remnant atmosphere resembles the flow around solid bodies, including a `deadwater region in the near wake. Gas is stripped from the remnant atmosphere predominantly at its sides via Kelvin-Helmholtz instabilities. The downstream atmosphere is largely shielded from the ICM wind and thus shaped into a tail. Observationally, both, this `remnant tail and the stripped gas in the wake can appear as a `tail, but only in the wake can galactic gas mix with the ambient ICM. While the qualitative results are generic, the simulations presented here are tailored to the Virgo elliptical galaxy M89 (NGC 4552) for the most direct comparison to observations. Papers II and III of this series describe the effect of viscosity and compare to Chandra and XMM-Newton observations, respectively.
104 - E. Roediger 2012
We present results from two sim30 ks Chandra observations of the hot atmospheres of the merging galaxy groups centered around NGC 7618 and UGC 12491. Our images show the presence of arc-like sloshing cold fronts wrapped around each group center and s im100 kpc long spiral tails in both groups. Most interestingly, the cold fronts are highly distorted in both groups, exhibiting wings along the fronts. These features resemble the structures predicted from non-viscous hydrodynamic simulations of gas sloshing, where Kelvin-Helmholtz instabilities (KHIs) distort the cold fronts. This is in contrast to the structure seen in many other sloshing and merger cold fronts, which are smooth and featureless at the current observational resolution. Both magnetic fields and viscosity have been invoked to explain the absence of KHIs in these smooth cold fronts, but the NGC 7618/UGC 12491 pair are two in a growing number of both sloshing and merger cold fronts that appear distorted. Magnetic fields and/or viscosity may be able to suppress the growth of KHIs at the cold fronts in some clusters and groups, but clearly not in all. We propose that the presence or absence of KHI-distortions in cold fronts can be used as a measure of the effective viscosity and/or magnetic field strengths in the ICM.
The globular cluster M15 is unique in its display of star-to-star variations in the neutron-capture elements. Comprehensive abundance surveys have been previously conducted for handfuls of M15 red giant branch (RGB) and red horizontal branch (RHB) st ars. No attempt has been made to perform a single, self-consistent analysis of these stars, which exhibit a wide range in atmospheric parameters. In the current effort, a new comparative abundance derivation is presented for three RGB and six RHB members of the cluster. The analysis employs an updated version of the line transfer code MOOG, which now appropriately treats coherent, isotropic scattering. The apparent discrepancy in the previously reported values for the metallicity of M15 RGB and RHB stars is addressed and a resolute disparity of $Delta(RHB-RGB) approx 0.1$ dex in the iron abundance was found. The anti-correlative behavior of the light neutron capture elements (Sr, Y, Zr) is clearly demonstrated with both Ba and Eu, standard markers of the {it s}- and {it r}-process, respectively. No conclusive detection of Pb was made in the RGB targets. Consequently for the M15 cluster, this suggests that the main component of the {it s}-process has made a negligible contribution to those elements normally dominated by this process in solar system material. Additionally for the M15 sample, a large Eu abundance spread is confirmed, which is comparable to that of the halo field at the same metallicity. These abundance results are considered in the discussion of the chemical inhomogeneity and nucleosynthetic history of M15.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا