ﻻ يوجد ملخص باللغة العربية
We present results from two sim30 ks Chandra observations of the hot atmospheres of the merging galaxy groups centered around NGC 7618 and UGC 12491. Our images show the presence of arc-like sloshing cold fronts wrapped around each group center and sim100 kpc long spiral tails in both groups. Most interestingly, the cold fronts are highly distorted in both groups, exhibiting wings along the fronts. These features resemble the structures predicted from non-viscous hydrodynamic simulations of gas sloshing, where Kelvin-Helmholtz instabilities (KHIs) distort the cold fronts. This is in contrast to the structure seen in many other sloshing and merger cold fronts, which are smooth and featureless at the current observational resolution. Both magnetic fields and viscosity have been invoked to explain the absence of KHIs in these smooth cold fronts, but the NGC 7618/UGC 12491 pair are two in a growing number of both sloshing and merger cold fronts that appear distorted. Magnetic fields and/or viscosity may be able to suppress the growth of KHIs at the cold fronts in some clusters and groups, but clearly not in all. We propose that the presence or absence of KHI-distortions in cold fronts can be used as a measure of the effective viscosity and/or magnetic field strengths in the ICM.
We investigate the origin and nature of the multiple sloshing cold fronts in the core of Abell 496 by direct comparison between observations and dedicated hydrodynamical simulations. Our simulations model a minor merger with a 4{times}10^13M{circ} su
Sloshing cold fronts (CFs) arise from minor merger triggered gas sloshing. Their detailed structure depends on the properties of the intra-cluster medium (ICM): hydrodynamical simulations predict the CFs to be distorted by Kelvin-Helmholtz instabilit
Deep observations of nearby galaxy clusters with Chandra have revealed concave bay structures in a number of systems (Perseus, Centaurus and Abell 1795), which have similar X-ray and radio properties. These bays have all the properties of cold fronts
Transport coefficients in highly ionised plasmas like the intra-cluster medium (ICM) are still ill-constrained. They influence various processes, among them the mixing at shear flow interfaces due to the Kelvin-Helmholtz instability (KHI). The observ
Cold-fronts in cool-core clusters are thought to be induced by minor mergers and to develop through a sloshing mechanism. While temperature and surface-brightness jumps have been detected and measured in many systems, a detailed characterization of t