ترغب بنشر مسار تعليمي؟ اضغط هنا

106 - M. Kohno , R. Okamoto 2012
The reformulated coupled-cluster method (CCM), in which average many-body potentials are introduced, provides a useful framework to organize numerous terms appearing in CCM equations, which enables us to clarify the structure of the CCM theory and ph ysical importance of various terms more easily. We explicitly apply this framework to $^4$He, retaining one-body and two-body correlations as the first illustrating attempt. Numerical results with using two modern nucleon-nucleon interactions (AV18 and CD-Bonn) and their low-momentum interactions are presented. The characters of short-range and many-body correlations are discussed. Although not considered explicitly, the expression of the ground-state energy in the presence of a three-nucleon force is given.
202 - M. Kohno , R. Okamoto , H. Kamada 2007
Equivalent interactions in a low-momentum space for the $Lambda N$, $Sigma N$ and $Xi N$ interactions are calculated, using the SU$_6$ quark model potential as well as the Nijmegen OBEP model as the input bare interaction. Because the two-body scatte ring data has not been accumulated sufficiently to determine the hyperon-nucleon interactions unambiguously, the construction of the potential even in low-energy regions has to rely on a theoretical model. The equivalent interaction after removing high-momentum components is still model dependent. Because this model dependence reflects the character of the underlying potential model, it is instructive for better understanding of baryon-baryon interactions in the strangeness sector to study the low-momentum space $YN$ interactions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا