ترغب بنشر مسار تعليمي؟ اضغط هنا

229 - C. Lynch , R. L. Mutel , M. Gudel 2014
A number of radio-loud ultra cool dwarf stars (UCD) exhibit both continuous broadband and highly polarized pulsed radio emission. In order to determine the nature of the emission and the physical characteristics in the source region, we have made mul ti-epoch, wideband spectral observations of TVLM 0513-46 and 2M 0746+20. We combine these observations with archival radio data to fully characterize both the temporal and spectral properties of the radio emission. The continuum spectral energy distribution can be well modeled using gyrosynchrotron emission from mildly relativistic electrons in a dipolar field. The pulsed emission exhibits a variety of time-variable characteristics, including frequency drifts, frequency cutoffs, and multiple pulses per period. For 2M 0746+20 we determine a pulse period consistent with previously determined values. We modeled locations of pulsed emission using an oblique rotating magnetospheric model with beamed electron cyclotron maser (ECM) sources. The best-fit models have narrow ECM beaming angles aligned with the local source magnetic field direction, except for one isolated burst from 2M 0746+20. For TVLM 0513-46, the best-fit rotation axis inclination is nearly orthogonal to the line of sight. For 2M 0746+20 we found a good fit using a fixed inclination i=36 deg, determined from optical observations. For both stars the ECM sources are located near feet of magnetic loops with radial extents 1.2Rs-2.7 Rs and surface fields 2.2 - 2.5 kG. These results support recent suggestions that radio over-luminous UCDs have a global `weak field non-axisymmetric magnetic topologies.
198 - C. Lynch , R. L. Mutel , M. Gudel 2013
The active young protostar DG Tau has an extended jet that has been well studied at radio, optical, and X-ray wavelengths. We report sensitive new VLA full-polarization observations of the core and jet between 5 GHz and 8 GHz. Our high angular resolu tion observation at 8 GHz clearly shows an unpolarized inner jet with a size 42 AU (0.35) extending along a position angle similar to the optical-X ray outer jet. Using our nearly coeval 2012 VLA observations, we find a spectral-index=+0.46+/-0.05, which combined with the lack of polarization, is consistent with bremsstrahlung (free-free) emission, with no evidence for a non-thermal coronal component. By identifying the end of the radio jet as the optical depth unity surface, and calculating the resulting emission measure, we find our radio results are in agreement with previous optical line studies of electron density and consequent mass-loss rate. We also detect a weak radio knot at 5 GHz located 7 from the base of the jet, coincident with the inner radio knot detected by Rodriguez et al. (2012) in 2009 but at lower surface brightness. We interpret this as due to expansion of post-shock ionized gas in the three years between observations.
During the past decade there have been several attempts to detect cosmogenic ultra high energy (UHE) neutrinos by searching for radio Cerenkov bursts resulting from charged impact showers in terrestrial ice or the lunar regolith. So far these radio s earches have yielded no detections, but the inferred flux upper limits have started to constrain physical models for UHE neutrino generation. For searches which use the Moon as a target, we summarize the physics of the interaction, properties of the resulting Cerenkov radio pulse, detection statistics, effective aperture scaling laws, and derivation of upper limits for isotropic and point source models. We report on initial results from the RESUN search, which uses the Expanded Very Large Array configured in multiple sub-arrays of four antennas at 1.45 GHz pointing along the lunar limb. We detected no pulses of lunar origin during 45 observing hours. This implies upper limits to the differential neutrino flux E^2 dN/dE < 0.003 EeV km^{-2} s^{-1} sr^{-1} and < 0.0003 EeV km$^{-2} s^{-1} at 90% confidence level for isotropic and sampled point sources respectively, in the neutrino energy range 10^{21.6} < E(eV) < 10^{22.6}. The isotropic flux limit is comparable to the lowest published upper limits for lunar searches. The full RESUN search, with an additional 200 hours observing time and an improved data acquisition scheme, will be be an order of magnitude more sensitive in the energy range 10^{21} < E(eV) < 10^{22} than previous lunar-target searches, and will test Z burst models of neutrino generation.
We derive analytic expressions, and approximate them in closed form, for the effective detection aperture for Cerenkov radio emission from ultra-high-energy neutrinos striking the Moon. The resulting apertures are in good agreement with recent Monte Carlo simulations and support the conclusion of James & Protheroe (2009)that neutrino flux upper limits derived from the GLUE search (Gorham et al.2004) were too low by an order of magnitude. We also use our analytic expressions to derive scaling laws for the aperture as a function of observational and lunar parameters. We find that at low frequencies downward-directed neutrinos always dominate, but at higher frequencies, the contribution from upward-directed neutrinos becomes increasingly important, especially at low neutrino energies. Detecting neutrinos from Earth near the GZK regime will likely require radio telescope arrays with extremely large collecting area and hundreds of hour of exposure time. Higher energy neutrinos are most easily detected using lower frequencies. Lunar surface roughness is a decisive factor for obtaining detections at higher frequencies and higher energies.
We calculate growth rates and corresponding gains for RX and LO mode radiation associated with the cyclotron maser instability for parameterized horseshoe electron velocity distributions. The velocity distribution function was modeled to closely fit the electron distribution functions observed in the auroral cavity. We systematically varied the model parameters as well as the propagation direction to study the dependence of growth rates on model parameters. The growth rate depends strongly on loss cone opening angle, which must be less than $90^{o}$ for significant CMI growth. The growth rate is sharply peaked for perpendicular radiation ($k_{parallel} = 0$), with a full-width at half-maximum $1.7^{o}$, in good agreement with observed k-vector orientations and numerical simulations. The fractional bandwidth varied between 10$^{-4}$ and 10$^{-2}$, depending most strongly on propagation direction. This range encompasses nearly all observed fractional AKR burst bandwidths. We find excellent agreement between the computed RX mode emergent intensities and observed AKR intensities assuming convective growth length $L_capprox$20-40 km and group speed 0.15$c$. The only computed LO mode growth rates compatible observed LO mode radiation levels occurred for number densities more than 100 times the average energetic electron densities measured in auroral cavities. This implies that LO mode radiation is not produced directly by the CMI mechanism but more likely results from mode conversion of RX mode radiation. We find that perturbation of the model velocity distribution by large ion solitary waves (ion holes) can enhance the growth rate by a factor of 2-4. This will result in a gain enhancement more than 40 dB depending on the convective growth length within the structure. Similar enhancements may be caused by EMIC waves.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا