ترغب بنشر مسار تعليمي؟ اضغط هنا

VLA Observations of DG Taus Radio Jet: A highly collimated thermal outflow

247   0   0.0 ( 0 )
 نشر من قبل Christene Lynch
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The active young protostar DG Tau has an extended jet that has been well studied at radio, optical, and X-ray wavelengths. We report sensitive new VLA full-polarization observations of the core and jet between 5 GHz and 8 GHz. Our high angular resolution observation at 8 GHz clearly shows an unpolarized inner jet with a size 42 AU (0.35) extending along a position angle similar to the optical-X ray outer jet. Using our nearly coeval 2012 VLA observations, we find a spectral-index=+0.46+/-0.05, which combined with the lack of polarization, is consistent with bremsstrahlung (free-free) emission, with no evidence for a non-thermal coronal component. By identifying the end of the radio jet as the optical depth unity surface, and calculating the resulting emission measure, we find our radio results are in agreement with previous optical line studies of electron density and consequent mass-loss rate. We also detect a weak radio knot at 5 GHz located 7 from the base of the jet, coincident with the inner radio knot detected by Rodriguez et al. (2012) in 2009 but at lower surface brightness. We interpret this as due to expansion of post-shock ionized gas in the three years between observations.



قيم البحث

اقرأ أيضاً

Radio emission from protostellar jets is usually dominated by free-free emission from thermal electrons. However, in some cases, it has been proposed that non-thermal emission could also be present. This additional contribution from non-thermal emiss ion has been inferred through negative spectral indices at centimeter wavelengths in some regions of the radio jets. In the case of HH 80-81, one of the most powerful protostellar jets known, linearly polarized emission has also been detected, revealing that the non-thermal emission is of synchrotron nature from a population of relativistic particles in the jet. This result implies that an acceleration mechanism should be taking place in some parts of the jet. Here, we present new high sensitivity and high angular resolution radio observations at several wavelengths (in the 3-20 cm range) of the HH80-81 radio jet. These new observations represent an improvement in sensitivity and angular resolution by a factor of $sim$10 with respect to previous observations. This allows us to resolve the morphology of the radio jet, and to study the different emission mechanisms involved through spectral index maps. We conclude that synchrotron emission in this jet arises from an extended component detected at low frequencies and from the termination points of the jet, where strong shocks against the ambient medium can produce efficient particle acceleration.
AR Scorpii is unique amongst known white dwarf binaries in showing powerful pulsations extending to radio frequencies. Here we aim to investigate the multi-frequency radio emission of AR Sco in detail, in order to constrain its origin and emission me chanisms. We present interferometric radio frequency imaging of AR Sco at 1.5, 5 and 9 GHz, analysing the total flux and polarization behaviour of this source at high time resolution (10, 3 and 3 s), across a full 3.6 hr orbital period in each band. We find strong modulation of the radio flux on the orbital period and the orbital sideband of the white dwarfs spin period (also known as the beat period). This indicates that, like the optical flux, the radio flux arises predominantly from on or near the inner surface of the M-dwarf companion star. The beat-phase pulsations of AR Sco decrease in strength with decreasing frequency. They are strongest at 9 GHz and at an orbital phase ~0.5. Unlike the optical emission from this source, radio emission from AR Sco shows weak linear polarization but very strong circular polarization, reaching ~30% at an orbital phase ~0.8. We infer the probable existence of a non-relativistic cyclotron emission component, which dominates at low radio frequencies. Given the required magnetic fields, this also likely arises from on or near the M-dwarf.
We present the results of multi-epoch very long baseline interferometry (VLBI) water (H2O) maser observations carried out with the VLBI Exploration of Radio Astrometry (VERA) toward the Cepheus A HW3d object. We measured for the first time relative p roper motions of the H2O maser features, whose spatio-kinematics traces a compact bipolar outflow. This outflow looks highly collimated and expanding through ~ 280 AU (400 mas) at a mean velocity of ~ 21 km/s (~ 6 mas/yr) without taking into account the turbulent central maser cluster. The opening angle of the outflow is estimated to be ~ 30{circ}. The dynamical time-scale of the outflow is estimated to be ~ 100 years. Our results provide strong support that HW3d harbors an internal massive young star, and the observed outflow could be tracing a very early phase of star formation. We also have analyzed Very Large Array (VLA) archive data of 1.3 cm continuum emission obtained in 1995 and 2006 toward Cepheus A. The comparative result of the HW3d continuum emission suggests the possibility of the existence of distinct young stellar objects (YSOs) in HW3d and/or strong variability in one of their radio continuum emission components.
133 - R. Angeloni 2011
Highly-collimated gas ejections are among the most dramatic structures in the Universe, observed to emerge from very different astrophysical systems - from active galactic nuclei down to young brown dwarf stars. Even with the huge span in spatial sca les, there is convincing evidence that the physics at the origin of the phenomenon, namely the acceleration and collimation mechanisms, is the same in all classes of jets. Here we report on the discovery of a giant, highly-collimated jet from Sanduleaks star in the Large Magellanic Cloud (LMC). With a physical extent of 14 parsecs at the distance of the LMC, it represents the largest stellar jet ever discovered, and the first resolved stellar jet beyond the Milky Way. The kinematics and extreme chemical composition of the ejecta from Sanduleaks star bear strong resemblance with the low-velocity remnants of SN1987A and with the outer filaments of the most famous supernova progenitor candidate, i.e., eta Carinae. Moreover, the precise knowledge of the jets distance implies that it will be possible to derive accurate estimates of most of its physical properties. Sanduleaks bipolar outflow will thus become a crucial test-bed for future theoretical modeling of astrophysical jets.
59 - John Bally , Zen H. Chia 2019
Deep, narrow-band Ha and 6584 AA [Nii ] CCD images of the peculiar, infrared excess B[e] star MWC~922 reveal a collimated, bipolar jet orthogonal to the previously detected extended nebula. The jet consists of a pair of $sim$0.15 pc segments on eithe r side of MWC~922 separated by gaps. The most distant jet segments disappear $sim$0.6 pc from the star. The northwest beam points to a faint emission-line feature 1.65 pc from MWC~922 that may be a terminal bow shock where the jet rams the ambient medium. The narrow opening-angle of the jet combined with an estimated internal sound speed of $sim$10 kms implies a jet speed $sim$500 kms . The previously detected nebula extends up to 0.6~pc to the southwest of MWC~922 at right angles to the jet and appears to be an extension of the compact, edge-on disk surrounding the star. It points toward the HII region Messier 16 located $sim$1degr ($sim$30 pc in projection) to the southwest. This nebula and jet appear to be externally ionized by the ambient Lyman continuum radiation field and have electron densities of n$_e sim$ 50 to 100 cm$^{-3}$. The southwest nebula and jet have similar surface brightness in Ha and [Nii ]. Faint 70 $mu$m emission traces the southwest ejecta that likely originates from $sim$50 K dust embedded in the photo-ionized plasma which may shadow the dimmer ejecta northeast of MWC~922. MWC~922 may be a massive member of the Serpens OB1 or OB2 associations surrounding Messier 16 and Sh2-54.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا