ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate magnetic, thermal, and dielectric properties of SrCuTe2O6, which is isostructural to PbCuTe2O6, a recently found, Cu-based 3D frustrated magnet with a corner sharing triangular spin network having dominant first and second nearest neig hbor (nn) couplings [B. Koteswararao, et al. Phys. Rev. B 90, 035141 (2014)]. Although SrCuTe2O6 has a structurally similar spin network, but the magnetic data exhibit the characteristic features of a typical quasi -one-dimensional magnet, which mainly resulted from the magnetically dominant third nn coupling, uniform chains. The magnetic properties of this system are studied via magnetization (M), heat capacity (Cp), dielectric constant, measurements along with ab-initio band structure calculations. Magnetic susceptibility chi(T) data show a broad maximum at 32 K and the system orders at low temperatures TN1=5.5 K and TN2=4.5 K, respectively. The analysis of chi(T) data gives an intra-chain coupling, J3/kB, to be about - 42 K with non-negligible frustrated inter-chain couplings (J1/kB and J2/kB). The hopping parameters obtained from LDA band structure calculations also suggest the presence of coupled uniform chains. The observation of simultaneous anomalies in dielectric constant at TN1 and TN2 suggests the presence of magneto-dielectric effect in SrCuTe2O6. A magnetic phase diagram is also built based on M, C p, and dielectric constant results.
We report magnetic susceptibility (chi) and heat capacity Cp measurements along with ab-initio electronic structure calculations on PbCuTe2O6, a compound made up of a three dimensional 3D network of corner-shared triangular units. The presence of ant iferromagnetic interactions is inferred from a Curie-Weiss temperature (theta_CW) of about -22 K from the chi(T) data. The magnetic heat capacity (Cm) data show a broad maximum at T^max ~ 1.15 K (i.e. T^max/theta_CW ~ 0.05), which is analogous to the the observed broad maximum in the Cm/T data of a hyper-Kagome system, Na4Ir3O8. In addition, Cm data exhibit a weak kink at T^* ~ 0.87 K. While the T^max is nearly unchanged, the T^* is systematically suppressed in an increasing magnetic field (H) up to 80 kOe. For H > 80 kOe, the Cm data at low temperatures exhibit a characteristic power-law (T^{alpha}) behavior with an exponent {alpha} slightly less than 2. Hopping integrals obtained from the electronic structure calculations show the presence of strongly frustrated 3D spin interactions along with non-negligible unfrustrated couplings. Our results suggest that PbCuTe2O6 is a candidate material for realizing a 3D quantum spin liquid state at high magnetic fields.
We have carried out detailed bulk and local probe studies on the hexagonal oxides Ba3MIr2O9 (M=Sc,Y) where Ir is expected to have a fractional oxidation state of +4.5. In the structure, Ir-Ir dimers are arranged in an edge shared triangular network p arallel to the ab plane. Whereas only weak anomalies are evident in the susceptibility data, clearer anomalies are present in the heat capacity data. Our 45Sc nuclear magnetic resonance (NMR) lineshape (first order quadrupole split) is symmetric at room temperature but becomes progressively asymmetric with decreasing temperatures. This is suggestive of distortions in the structure which could arise from progressive tilt/rotation of the IrO6 octahedra with a decrease in temperature T. The 45Sc NMR spectral weight shifts near the reference frequency with decreasing T indicating the development of magnetic singlet regions. Around 10K, a significant change in the spectrum takes place with a large intensity appearing near the reference frequency but with the spectrum remaining multi-peak. It appears from our 45Sc NMR data that in Ba3ScIr2O9 significant disorder is still present below 10K. In the case of Ba3YIr2O9, the 89Y NMR spectral lines are asymmetric at high temperatures but become nearly symmetric (single magnetic environment) below T~70K. Our 89Y spectra and T1 measurements confirm the onset of long range ordering (LRO) from a bulk of the sample at 4K in this compound. Our results suggest that Ba3YIr2O9 might be structurally distorted at room temperature (via, for example, tilt/rotations of the IrO6 octahedra) but becomes progressively a regular triangular lattice with decreasing T. The effective magnetic moments and magnetic entropy changes are strongly reduced in Ba3YIr2O9 as compared to those expected for a S=1/2 system. Similar effects have been found in other iridates which naturally have strong spin-orbit coupling (SOC).
We report the structural transformation of hexagonal Ba3YIr2O9 to a cubic double perovskite form (stable in ambient conditions) under an applied pressure of 8GPa at 1273K. While the ambient pressure (AP) synthesized sample undergoes long-range magnet ic ordering at 4K, the high pressure(HP) synthesized sample does not order down to 2K as evidenced from our susceptibility, heat capacity and nuclear magnetic resonance (NMR) measurements. Further, for the HP sample, our heat capacity data have the form gamma*T+beta*T3 in the temperature (T) range of 2-10K with the Sommerfeld coefficient gamma=10mJ/mol-Ir K2. The 89Y NMR shift has no T-dependence in the range of 4-120K and its spin-lattice relaxation rate varies linearly with T in the range of 8-45K (above which it is T-independent). Resistance measurements of both the samples confirm that they are semiconducting. Our data provide evidence for the formation of a 5d based, gapless, quantum spin-liquid (QSL) in the cubic (HP) phase of Ba3YIr2O9. In this picture, the T term in the heat capacity and the linear variation of 89Y 1/T1 arises from excitations out of a spinon Fermi surface. Our findings lend credence to the theoretical suggestion [G. Chen, R. Pereira, and L. Balents, Phys. Rev. B 82, 174440 (2010)] that strong spin-orbit coupling can enhance quantum fluctuations and lead to a QSL state in the double perovskite lattice.
109 - R. Kumar , E. Barrios , C. Kupchak 2012
The photon creation and annihilation operators are cornerstones of the quantum description of the electromagnetic field. They signify the isomorphism of the optical Hilbert space to that of the harmonic oscillator and the bosonic nature of photons. W e perform complete experimental characterization (quantum process tomography) of these operators. By measuring their effect on coherent states, we obtain their process tensor in the Fock basis, which explicitly shows the raising and lowering properties of these operators with respect to photon number states. This is the first experimental demonstration of complete tomography of non-deterministic quantum processes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا