ترغب بنشر مسار تعليمي؟ اضغط هنا

Unconventional magnetism in the spin-orbit driven Mott insulators Ba3MIr2O9 (M=Sc,Y)

44   0   0.0 ( 0 )
 نشر من قبل Tusharkanti Dey
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have carried out detailed bulk and local probe studies on the hexagonal oxides Ba3MIr2O9 (M=Sc,Y) where Ir is expected to have a fractional oxidation state of +4.5. In the structure, Ir-Ir dimers are arranged in an edge shared triangular network parallel to the ab plane. Whereas only weak anomalies are evident in the susceptibility data, clearer anomalies are present in the heat capacity data. Our 45Sc nuclear magnetic resonance (NMR) lineshape (first order quadrupole split) is symmetric at room temperature but becomes progressively asymmetric with decreasing temperatures. This is suggestive of distortions in the structure which could arise from progressive tilt/rotation of the IrO6 octahedra with a decrease in temperature T. The 45Sc NMR spectral weight shifts near the reference frequency with decreasing T indicating the development of magnetic singlet regions. Around 10K, a significant change in the spectrum takes place with a large intensity appearing near the reference frequency but with the spectrum remaining multi-peak. It appears from our 45Sc NMR data that in Ba3ScIr2O9 significant disorder is still present below 10K. In the case of Ba3YIr2O9, the 89Y NMR spectral lines are asymmetric at high temperatures but become nearly symmetric (single magnetic environment) below T~70K. Our 89Y spectra and T1 measurements confirm the onset of long range ordering (LRO) from a bulk of the sample at 4K in this compound. Our results suggest that Ba3YIr2O9 might be structurally distorted at room temperature (via, for example, tilt/rotations of the IrO6 octahedra) but becomes progressively a regular triangular lattice with decreasing T. The effective magnetic moments and magnetic entropy changes are strongly reduced in Ba3YIr2O9 as compared to those expected for a S=1/2 system. Similar effects have been found in other iridates which naturally have strong spin-orbit coupling (SOC).

قيم البحث

اقرأ أيضاً

A hole injected into a Mott insulator will gain an internal structure as recently identified by exact numerics, which is characterized by a nontrivial quantum number whose nature is of central importance in understanding the Mott physics. In this wor k, we show that a spin texture associated with such an internal degree of freedom can explicitly manifest after the spin degeneracy is lifted by a emph{weak} Rashba spin-orbit coupling (SOC). It is described by an emergent angular momentum $J_{z}=pm3/2$ as shown by both exact diagonalization (ED) and variational Monte Carlo (VMC) calculations, which are in good agreement with each other at a finite size. In particular, as the internal structure such a spin texture is generally present in the hole composite even at high excited energies, such that a corresponding texture in momentum space, extending deep inside the Brillouin zone, can be directly probed by the spin-polarized angle-resolved photoemission spectroscopy (ARPES). This is in contrast to a Landau quasiparticle under the SOC, in which the spin texture induced by SOC will not be protected once the excited energy is larger than the weak SOC coupling strength, away from the Fermi energy. We point out that the spin texture due to the SOC should be monotonically enhanced with reducing spin-spin correlation length in the superconducting/pseudogap phase at finite doping. A brief discussion of a recent experiment of the spin-polarized ARPES will be made.
We develop a strong coupling approach towards quantum magnetism in Mott insulators for Wannier obstructed bands. Despite the lack of Wannier orbitals, electrons can still singly occupy a set of exponentially-localized but nonorthogonal orbitals to mi nimize the repulsive interaction energy. We develop a systematic method to establish an effective spin model from the electron Hamiltonian using a diagrammatic approach. The nonorthogonality of the Mott basis gives rise to multiple new channels of spin-exchange (or permutation) interactions beyond Hartree-Fock and superexchange terms. We apply this approach to a Kagome lattice model of interacting electrons in Wannier obstructed bands (including both Chern bands and fragile topological bands). Due to the orbital nonorthogonality, as parameterized by the nearest neighbor orbital overlap $g$, this model exhibits stable ferromagnetism up to a finite bandwidth $Wsim U g$, where $U$ is the interaction strength. This provides an explanation for the experimentally observed robust ferromagnetism in Wannier obstructed bands. The effective spin model constructed through our approach also opens up the possibility for frustrated quantum magnetism around the ferromagnet-antiferromagnet crossover in Wannier obstructed bands.
We propose a method for controlling the exchange interactions of Mott insulators with strong spin-orbit coupling. We consider a multiorbital system with strong spin-orbit coupling and a circularly polarized light field and derive its effective Hamilt onian in the strong-interaction limit. Applying this theory to a minimal model of $alpha$-RuCl$_{3}$, we show that the magnitudes and signs of three exchange interactions, $J$, $K$, and $Gamma$, can be changed simultaneously. Then, considering another case in which one of the hopping integrals has a different value and the other parameters are the same as those for $alpha$-RuCl$_{3}$, we show that the Heisenberg interaction $J$ can be made much smaller than the anisotropic exchange interactions $K$ and $Gamma$.
We study the effect of a magnetic field on the low energy description of Mott insulators with strong spin-orbit (SO) coupling. In contrast to the standard case of the Hubbard model without SO coupling, we show that Peierls phases can modulate the mag netic exchange at leading order in the interaction. Our mechanism crucially depends on the existence of distinct exchange paths between neighboring magnetic ions enclosing a well-defined area. Thus it will generically be present in any solid state realisation of the Kitaev model and its extensions. We explicitly calculate the variation of the exchange constants of the so-called $JKGamma$ model as a function of the magnetic flux. We discuss experimental implications of our findings for various settings of candidate Kitaev spin liquids.
The consequences of the Jahn-Teller (JT) orbital-lattice coupling for magnetism of pseudospin J_{eff}=1/2 and J_{eff}=0 compounds are addressed. In the former case, represented by Sr_2IrO_4, this coupling generates, through the so-called pseudo-JT ef fect, orthorhombic deformations of a crystal concomitant with magnetic ordering. The orthorhombicity axis is tied to the magnetization and rotates with it under magnetic field. The theory resolves a number of puzzles in Sr_2IrO_4 such as the origin of in-plane magnetic anisotropy and magnon gaps, metamagnetic transition, etc. In J_{eff}=0 systems, the pseudo-JT effect leads to spin-nematic transition well above magnetic ordering, which may explain the origin of `orbital order in Ca_2RuO_4
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا