ترغب بنشر مسار تعليمي؟ اضغط هنا

A qualitative analysis is given to the data on the full magnetic and velocity vector fields in a growing sunspot group, recorded nearly simultaneously with the Solar Optical Telescope on the Hinode satellite. Observations of a young bipolar subregion developing within AR 11313 were carried out on 9-10 October 2011. Our aim was to form am idea about the consistency of the observed pattern with the well-known rising-tube model of the formation of bipolar acrive regions and sunspot groups. We find from our magnetograms that the distributions of the vertical [B_v] and the horizontal [B_h] component of the magnetic field over the area of the magnetic subregion are spatially well correlated; in contrast, the rise of a flux-tube loop would result in a qualitatively different pattern, with the maxima of the two magnetic-field components spatially separated: the vertical field would be the strongest where either spot emerges, while the maximum horizontal-field strengths would be reached in between them. A specific feature, which we call the bordering effect, is revealed: some local extrema of B_v are bordered with areas of locally enhanced B_h. This effect suggests a fountainlike spatial structure of the magnetic field near the B_v extrema, which is also hardly compatible with the emergence of a flux-tube loop. The vertical-velocity field in the area of the developing active subregion does not exhibit any upflow on the scale of the whole subregion, which should be related to the rising-tube process. Thus, our observational data can hardly be interpreted in the framework of the rising-tube model.
Magnetic field measurements in the upper chromosphere and above, where the gas-to-magnetic pressure ratio $beta$ is lower than unity, are essential for understanding the thermal structure and dynamical activity of the solar atmosphere. Recent develop ments in the theory and numerical modeling of polarization in spectral lines have suggested that information on the magnetic field of the chromosphere-corona transition region could be obtained by measuring the linear polarization of the solar disk radiation at the core of the hydrogen Lyman-$alpha$ line at 121.6~nm, which is produced by scattering processes and the Hanle effect. The Chromospheric Lyman-$alpha$ Spectropolarimeter (CLASP) sounding rocket experiment aims to measure the intensity (Stokes $I$) and the linear polarization profiles ($Q/I$ and $U/I$) of the hydrogen Lyman-$alpha$ line. In this paper we clarify the information that the Hanle effect can provide by applying a Stokes inversion technique based on a database search. The database contains all theoretical $Q/I$ and $U/I$ profiles calculated in a one-dimensional semi-empirical model of the solar atmosphere for all possible values of the strength, inclination, and azimuth of the magnetic field vector, though this atmospheric region is highly inhomogeneous and dynamic. We focus on understanding the sensitivity of the inversion results to the noise and spectral resolution of the synthetic observations as well as the ambiguities and limitation inherent to the Hanle effect when only the hydrogen Lyman-$alpha$ is used. We conclude that spectropolarimetric observations with CLASP can indeed be a suitable diagnostic tool for probing the magnetism of the transition region, especially when complemented with information on the magnetic field azimuth that can be obtained from other instruments.
56 - A. V. Getling , R. Ishikawa , 2014
Some preliminary processing results are presented for a dataset obtained with the Solar Optical Telescope on the Hinode satellite. The idea of the project is to record, nearly simultaneously, the full velocity and magnetic-field vectors in growing ac tive regions and sunspot groups at a photospheric level. Our ultimate aim is to elaborate observational criteria to distinguish between the manifestations of two mechanisms of sunspot-group formation --- the rising of an Omega-shaped flux tube of a strong magnetic field and the in situ amplification and structuring of magnetic field by convection (the convective mechanism is briefly described). Observations of a young bipolar subregion developing within AR 11313 were carried out on 9--10 October 2011. Based on the series of filtergrams, the trajectories of corks are computed, using a technique similar to but more reliable than local correlation tracking (LCT), and compared with the magnetic maps. At this stage of the investigation, only the vertical magnetic field and the horizontal flows are used for a qualitative analysis. According to our preliminary findings, the velocity pattern in the growing active region has nothing to do with a spreading flow on the scale of the entire bipolar region, which could be expected if a tube of strong magnetic field emerged. No violent spreading flows on the scale of the entire growing magnetic region can be identified. Instead, normal mesogranular and supergranular flows are preserved. The observed scenario of evolution seems to agree with Bumbas inference that the development of an active region does not entail the destruction of the existing convective-velocity field. The convective mechanism appears to be better compatible with observations than the rising-tube mechanism.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا