ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work we derive the full 3-D kinematics of the near-infrared outflow HH 223, located in the dark cloud Lynds 723 (L723), where a well-defined quadrupolar CO outflow is found. HH 223 appears projected onto the two lobes of the east-west CO outf low. The radio continuum source VLA 2, towards the centre of the CO outflow, harbours a multiple system of low-mass young stellar objects. One of the components has been proposed to be the exciting source of the east-west CO outflow. From the analisys of the kinematics, we get further evidence on the relationship between the near-infrared and CO outflows and on the location of their exciting source. The proper motions were derived using multi-epoch, narrow-band H$_2$ (2.122 $mu$m line) images. Radial velocities were derived from the 2.122 $mu$m line of the spectra. Because of the extended (~5 arcmin), S-shaped morphology of the target, the spectra were obtained with the Multi-Object-Spectroscopy (MOS) observing mode using the instrument LIRIS at the 4.2m William Herschel Telescope. To our knowledge, this work is the first time that MOS observing mode has been successfully used in the near infrared range for an extended target.
We report multi-epoch VLBI H$_2$O maser observations towards the compact cluster of YSOs close to the Herbig Be star LkH$alpha$ 234. This cluster includes LkH$alpha$ 234 and at least nine more YSOs that are formed within projected distances of $sim$1 0 arcsec ($sim$9,000 au). We detect H$_2$O maser emission towards four of these YSOs. In particular, our VLBI observations (including proper motion measurements) reveal a remarkable very compact ($sim$0.2 arcsec = $sim$180 au), bipolar H$_2$O maser outflow emerging from the embedded YSO VLA 2. We estimate a kinematic age of $sim$40 yr for this bipolar outflow, with expanding velocities of $sim$20 km s$^{-1}$ and momentum rate $dot M_w V_w$ $simeq$ $10^{-4}-10^{-3}$ M$_{odot}$ yr$^{-1}$ km s$^{-1}$$times (Omega$/$4pi)$, powered by a YSO of a few solar masses. We propose that the outflow is produced by recurrent episodic jet ejections associated with the formation of this YSO. Short-lived episodic ejection events have previously been found towards high-mass YSOs. We show now that this behaviour is also present in intermediate-mass YSOs. These short-lived episodic ejections are probably related to episodic increases in the accretion rate, as observed in low-mass YSOs. We predict the presence of an accretion disk associated with VLA 2. If detected, this would represent one of the few known examples of intermediate-mass stars with a disk-YSO-jet system at scales of a few hundred au.
We present the results of the observations of the (J,K)=(1,1) and the (J,K)=(2,2) inversion transitions of the NH3 molecule toward a large sample of 40 regions with molecular or optical outflows, using the 37 m radio telescope of the Haystack Observa tory. We detected NH3 emission in 27 of the observed regions, which we mapped in 25 of them. Additionally, we searched for the 6{16}-5{23} H2O maser line toward six regions, detecting H2O maser emission in two of them, HH265 and AFGL 5173. We estimate the physical parameters of the regions mapped in NH3 and analyze for each particular region the distribution of high density gas and its relationship with the presence of young stellar objects. From the global analysis of our data we find that in general the highest values of the line width are obtained for the regions with the highest values of mass and kinetic temperature. We also found a correlation between the nonthermal line width and the bolometric luminosity of the sources, and between the mass of the core and the bolometric luminosity. We confirm with a larger sample of regions the conclusion of Anglada et al. (1997) that the NH3 line emission is more intense toward molecular outflow sources than toward sources with optical outflow, suggesting a possible evolutionary scheme in which young stellar objects associated with molecular outflows progressively lose their neighboring high-density gas, weakening both the NH3 emission and the molecular outflow in the process, and making optical jets more easily detectable as the total amount of gas decreases.
125 - G. Busquet 2010
The deuterium fractionation, Dfrac, has been proposed as an evolutionary indicator in pre-protostellar and protostellar cores of low-mass star-forming regions. We investigate Dfrac, with high angular resolution, in the cluster environment surrounding the UCHII region IRAS 20293+3952. We performed high angular resolution observations with the IRAM Plateau de Bure Interferometer (PdBI) of the ortho-NH2D 1_{11}-1_{01} line at 85.926 GHz and compared them with previously reported VLA NH3 data. We detected strong NH2D emission toward the pre-protostellar cores identified in NH3 and dust emission, all located in the vicinity of the UCHII region IRAS 20293+3952. We found high values of Dfrac~0.1-0.8 in all the pre-protostellar cores and low values, Dfrac<0.1, associated with young stellar objects. The high values of Dfrac in pre-protostellar cores could be indicative of evolution, although outflow interactions and UV radiation could also play a role.
143 - R. Lopez , R. Estalella , G. Gomez 2009
HH 223 is a knotty, wiggling nebular emission of ~30 length found in the L723 star-forming region. It lies projected onto the largest blueshifted lobe of the cuadrupolar CO outflow powered by a low-mass YSO system embedded in the core of L723. We ana lysed the physical conditions and kinematics along HH 223 with the aim of disentangling whether the emission arises from shock-excited, supersonic gas characteristic of a stellar jet, or is only tracing the wall cavity excavated by the CO outflow. We performed long-slit optical spectroscopy along HH 223, crossing all the bright knots (A to E) and part of the low-brightness emission nebula (F filament). One spectrum of each knot, suitable to characterize the nature of its emission, was obtained. The physical conditions and the radial velocity of the HH 223 emission along the slits were also sampled at smaller scale (0.6) than the knot sizes. {The spectra of all the HH 223 knots appear as those of the intermediate/high excitation Herbig-Haro objects. The emission is supersonic, with blueshifted peak velocities ranging from -60 to -130 km/s. Reliable variations in the kinematics and physical conditions at smaller scale that the knot sizes are also found. The properties of the HH 223 emission derived from the spectroscopy confirm the HH nature of the object, the supersonic optical outflow most probably also being powered by the YSOs embedded in the L723 core.
88 - M.T. Beltran 2007
Context. This is the third of a series of papers devoted to study in detail and with high-angular resolution intermediate-mass molecular outflows and their powering sources. Aims. The aim of this paper is to study the intermediate-mass YSO IRAS 20050 +2720 and its molecular outflow, and put the results of this and the previous studied sources in the context of intermediate-mass star formation. Methods. We carried out VLA observations of the 7 mm continuum emission, and OVRO observations of the 2.7 mm continuum emission, CO(1-0), C18O(1-0), and HC3N(12-11) to map the core towards IRAS 20050+2720. The high-angular resolution of the observations allowed us to derive the properties of the dust emission, the molecular outflow, and the dense protostellar envelope. By adding this source to the sample of intermediate-mass protostars with outflows, we compare their properties and evolution with those of lower mass counterparts. Results. The 2.7mm continuum emission has been resolved into three sources, labeled OVRO 1, OVRO 2, and OVRO 3. Two of them, OVRO 1 and OVRO 2, have also been detected at 7 mm. OVRO 3, which is located close to the C18O emission peak, could be associated with IRAS 20050+2720. The mass of the sources, estimated from the dust continuum emission, is 6.5 Msun for OVRO 1, 1.8 Msun for OVRO 2, and 1.3 Msun for OVRO 3. The CO(1-0) emission traces two bipolar outflows within the OVRO field of view, a roughly east-west bipolar outflow, labeled A, driven by the intermediate-mass source OVRO 1, and a northeast-southwest bipolar outflow, labeled B, probably powered by a YSO engulfed in the circumstellar envelope surrounding OVRO 1.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا