ترغب بنشر مسار تعليمي؟ اضغط هنا

The nature of HH 223 from long-slit spectroscopy

225   0   0.0 ( 0 )
 نشر من قبل Rosario Lopez
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

HH 223 is a knotty, wiggling nebular emission of ~30 length found in the L723 star-forming region. It lies projected onto the largest blueshifted lobe of the cuadrupolar CO outflow powered by a low-mass YSO system embedded in the core of L723. We analysed the physical conditions and kinematics along HH 223 with the aim of disentangling whether the emission arises from shock-excited, supersonic gas characteristic of a stellar jet, or is only tracing the wall cavity excavated by the CO outflow. We performed long-slit optical spectroscopy along HH 223, crossing all the bright knots (A to E) and part of the low-brightness emission nebula (F filament). One spectrum of each knot, suitable to characterize the nature of its emission, was obtained. The physical conditions and the radial velocity of the HH 223 emission along the slits were also sampled at smaller scale (0.6) than the knot sizes. {The spectra of all the HH 223 knots appear as those of the intermediate/high excitation Herbig-Haro objects. The emission is supersonic, with blueshifted peak velocities ranging from -60 to -130 km/s. Reliable variations in the kinematics and physical conditions at smaller scale that the knot sizes are also found. The properties of the HH 223 emission derived from the spectroscopy confirm the HH nature of the object, the supersonic optical outflow most probably also being powered by the YSOs embedded in the L723 core.



قيم البحث

اقرأ أيضاً

The Multi-slit Solar Explorer (MUSE) is a proposed mission aimed at understanding the physical mechanisms driving the heating of the solar corona and the eruptions that are at the foundation of space weather. MUSE contains two instruments, a multi-sl it EUV spectrograph and a context imager. It will simultaneously obtain EUV spectra (along 37 slits) and context images with the highest resolution in space (0.33-0.4 arcsec) and time (1-4 s) ever achieved for the transition region and corona. The MUSE science investigation will exploit major advances in numerical modeling, and observe at the spatial and temporal scales on which competing models make testable and distinguishable predictions, thereby leading to a breakthrough in our understanding of coronal heating and the drivers of space weather. By obtaining spectra in 4 bright EUV lines (Fe IX 171A, Fe XV 284A, Fe XIX-XXI 108A) covering a wide range of transition region and coronal temperatures along 37 slits simultaneously, MUSE will be able to freeze the evolution of the dynamic coronal plasma. We describe MUSEs multi-slit approach and show that the optimization of the design minimizes the impact of spectral lines from neighboring slits, generally allowing line parameters to be accurately determined. We also describe a Spectral Disambiguation Code to resolve multi-slit ambiguity in locations where secondary lines are bright. We use simulations of the corona and eruptions to perform validation tests and show that the multi-slit disambiguation approach allows accurate determination of MUSE observables in locations where significant multi-slit contamination occurs.
We present an analysis of four epochs of H$alpha$ and [S II] $lambdalambda$ 6716/6731 HST images of HH 1. For determining proper motions we explore a new method based on analysis of spatially degraded images obtained convolving the images with wavele t functions of chosen widths. With this procedure we are able to generate maps of proper motion velocities along and across the outflow axis, as well as (angularly integrated) proper motion velocity distributions. From the four available epochs, we find the time evolution of the velocities, intensities and spatial distribution of the line emission. We find that over the last two decades HH 1 shows a clear acceleration. Also, the H$alpha$ and [S II] intensities have first dropped, and then recovered in the more recent (2014) images. Finally, we show a comparison between the two available HST epochs of [O III] $lambda$ 5007 (1994 and 2014), in which we see a clear drop in the value of the [O III]/H$alpha$ ratio.
81 - D. Mesa , V. DOrazi , A. Vigan 2020
The determination of the fundamental properties (mass, separation, age, gravity and atmospheric properties) of brown dwarf companions allows us to infer crucial informations on their formation and evolution mechanisms. Spectroscopy of substellar comp anions is available to date only for a limited number of objects (and mostly at very low resolution, R<50) because of technical limitations, i.e., contrast and angular resolution. We present medium resolution (R=350), coronagraphic long-slit spectroscopic observations with SPHERE of two substellar companions, HD 1160 B and HD 19467 B. We found that HD 1160 B has a peculiar spectrum that cannot be fitted by spectra in current spectral libraries. A good fit is possible only considering separately the Y+J and the H spectral band. The spectral type is between M5 and M7. We also estimated a T_eff of 2800-2900 K and a log(g) of 3.5-4.0 dex. The low surface gravity seems to favour young age (10-20 Myr) and low mass (~20 M Jup ) for this object. HD 19467 B is instead a fully evolved object with a T_eff of ~1000 K and log g of ~5.0 dex. Its spectral type is T6+/-1.
HH 110 is a rather peculiar Herbig-Haro object in Orion that originates due to the deflection of another jet (HH 270) by a dense molecular clump, instead of being directly ejected from a young stellar object. Here we present new results on the kinema tics and physical conditions of HH 110 based on Integral Field Spectroscopy. The 3D spectral data cover the whole outflow extent (~4.5 arcmin, ~0.6 pc at a distance of 460 pc) in the spectral range 6500-7000 AA. We built emission-line intensity maps of H$alpha$, [NII] and [SII] and of their radial velocity channels. Furthermore, we analysed the spatial distribution of the excitation and electron density from [NII]/H$alpha$, [SII]/H$alpha$, and [SII] 6716/6731 integrated line-ratio maps, as well as their behaviour as a function of velocity, from line-ratio channel maps. Our results fully reproduce the morphology and kinematics obtained from previous imaging and long-slit data. In addition, the IFS data revealed, for the first time, the complex spatial distribution of the physical conditions (excitation and density) in the whole jet, and their behaviour as a function of the kinematics. The results here derived give further support to the more recent model simulations that involve deflection of a pulsed jet propagating in an inhomogeneous ambient medium. The IFS data give richer information than that provided by current model simulations or laboratory jet experiments. Hence, they could provide valuable clues to constrain the space parameters in future theoretical works.
In this work we derive the full 3-D kinematics of the near-infrared outflow HH 223, located in the dark cloud Lynds 723 (L723), where a well-defined quadrupolar CO outflow is found. HH 223 appears projected onto the two lobes of the east-west CO outf low. The radio continuum source VLA 2, towards the centre of the CO outflow, harbours a multiple system of low-mass young stellar objects. One of the components has been proposed to be the exciting source of the east-west CO outflow. From the analisys of the kinematics, we get further evidence on the relationship between the near-infrared and CO outflows and on the location of their exciting source. The proper motions were derived using multi-epoch, narrow-band H$_2$ (2.122 $mu$m line) images. Radial velocities were derived from the 2.122 $mu$m line of the spectra. Because of the extended (~5 arcmin), S-shaped morphology of the target, the spectra were obtained with the Multi-Object-Spectroscopy (MOS) observing mode using the instrument LIRIS at the 4.2m William Herschel Telescope. To our knowledge, this work is the first time that MOS observing mode has been successfully used in the near infrared range for an extended target.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا