ترغب بنشر مسار تعليمي؟ اضغط هنا

In a combined study of the decay spectra of $tau^-to K_Spi^- u_tau$ and $tau^-to K^-eta u_tau$ decays within a dispersive representation of the required form factors, we illustrate how the $K^*(1410)$ resonance parameters, defined through the pole po sition in the complex plane, can be extracted with improved precision as compared to previous studies. While we obtain a substantial improvement in the mass, the uncertainty in the width is only slightly reduced, with the findings $M_{K^{*prime}}=1304 pm 17,$MeV and $Gamma_{K^{*prime}} = 171 pm 62,$MeV. Further constraints on the width could result from updated analyses of the $Kpi$ and/or $Keta$ spectra using the full Belle-I data sample. Prospects for Belle-II are also discussed. As the $K^-pi^0$ vector form factor enters the description of the decay $tau^-to K^-eta u_tau$, we are in a position to investigate isospin violations in its parameters like the form factor slopes. In this respect also making available the spectrum of the transition $tau^-to K^-pi^0 u_tau$ would be extremely useful, as it would allow to study those isospin violations with much higher precision.
The mini-proceedings of the Light Meson Dynamics Workshop held in Mainz from February 10th to 12th, 2014, are presented. The web page of the conference, which contains all talks, can be found at https://indico.cern.ch/event/287442/overview .
126 - D. R. Boito , R. Escribano , 2010
Dispersive representations of the Kpi vector and scalar form factors are used to fit the spectrum of tau ---> K pi nu_tau obtained by the Belle collaboration incorporating constraints from results for K_l3 decays. The slope and curvature of the vecto r form factor are obtained directly from the data through the use of a three-times-subtracted dispersion relation. We find $lambda_+=(25.49 pm 0.31) times 10^{-3}$ and $lambda_+= (12.22 pm 0.14) times 10^{-4}$. From the pole position on the second Riemann sheet the mass and width of the $K^*(892)^{pm}$ are found to be $m_{K^*(892)^pm}=892.0pm 0.5$~MeV and $Gamma_{K^*(892)^pm}=46.5pm 1.1$~MeV. The phase-space integrals needed for K_l3 decays are calculated as well. Furthermore, the Kpi isospin-1/2 P-wave threshold parameters are derived from the phase of the vector form factor. For the scattering length and the effective range we find respectively $a_{1}^{1/2},= ( 0.166pm 0.004),m_pi^{-3}$ and $b_{1}^{1/2},=( 0.258pm 0.009),m_pi^{-5}$.
We present a model for the decay $D^+to K^-pi^+pi^+$. The weak interaction part of this reaction is described using the effective weak Hamiltonian in the factorisation approach. Hadronic final state interactions are taken into account through the $Kp i$ scalar and vector form factors fulfilling analyticity, unitarity and chiral symmetry constraints. Allowing for a global phase difference between the $S$ and $P$ waves of $-65^circ$, the Dalitz plot of the $D^+to K^-pi^+pi^+$ decay, the $Kpi$ invariant mass spectra and the total branching ratio due to $S$-wave interactions are well reproduced.
121 - D. R. Boito , R. Escribano 2009
We present a model for the decay D+ --> K- pi+ pi+. The weak interaction part of this reaction is described using the effective weak Hamiltonian in the factorisation approach. Hadronic final state interactions are taken into account through the Kpi s calar and vector form factors fulfilling analyticity, unitarity and chiral symmetry constraints. The model has only two free parameters that are fixed from experimental branching ratios. We show that the modulus and phase of the S wave thus obtained agree nicely with experiment up to 1.55 GeV. We perform Monte Carlo simulations to compare the predicted Dalitz plot with experimental analyses. Allowing for a global phase difference between the S and P waves of -65 degrees, the Dalitz plot of the D+ --> K- pi+ pi+ decay, the Kpi invariant mass spectra and the total branching ratio due to S-wave interactions are well reproduced.
The radiative decays $Vto Sgamma$ and $Sto Vgamma$ with $V=rho, omega, phi$ and $S=a_0, sigma, f_0$ are calculated within the framework of the Linear Sigma Model. Current experimental data on the $phito f_0gamma$ and $rhotosigmagamma$ branching ratio s and the ratio $Gamma(phito f_0gamma)/Gamma(phito a_0gamma)$ are satisfactorily accommodated in our approach. We also estimate the decay widths of the $f_0,a_0torhogamma,omegagamma$ transitions. All the processes considered are of interest for ongoing experimental programs in Frascati, Julich and Novosibirsk.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا