ﻻ يوجد ملخص باللغة العربية
Dispersive representations of the Kpi vector and scalar form factors are used to fit the spectrum of tau ---> K pi nu_tau obtained by the Belle collaboration incorporating constraints from results for K_l3 decays. The slope and curvature of the vector form factor are obtained directly from the data through the use of a three-times-subtracted dispersion relation. We find $lambda_+=(25.49 pm 0.31) times 10^{-3}$ and $lambda_+= (12.22 pm 0.14) times 10^{-4}$. From the pole position on the second Riemann sheet the mass and width of the $K^*(892)^{pm}$ are found to be $m_{K^*(892)^pm}=892.0pm 0.5$~MeV and $Gamma_{K^*(892)^pm}=46.5pm 1.1$~MeV. The phase-space integrals needed for K_l3 decays are calculated as well. Furthermore, the Kpi isospin-1/2 P-wave threshold parameters are derived from the phase of the vector form factor. For the scattering length and the effective range we find respectively $a_{1}^{1/2},= ( 0.166pm 0.004),m_pi^{-3}$ and $b_{1}^{1/2},=( 0.258pm 0.009),m_pi^{-5}$.
Recent experimental data for the differential decay distribution of the decay $tau^-to u_tau K_Spi^-$ by the Belle collaboration are described by a theoretical model which is composed of the contributing vector and scalar form factors $F_+^{Kpi}(s)$
We present a model for the decay $D^+to K^-pi^+pi^+$. The weak interaction part of this reaction is described using the effective weak Hamiltonian in the factorisation approach. Hadronic final state interactions are taken into account through the $Kp
We present a model for the decay D+ --> K- pi+ pi+. The weak interaction part of this reaction is described using the effective weak Hamiltonian in the factorisation approach. Hadronic final state interactions are taken into account through the Kpi s
We report on a search for CP violation in tau -> K^0_S pi nu_tau decays using a data sample of 699 fb^{-1} collected in the Belle experiment at the KEKB electron-positron asymmetric-energy collider. The CP asymmetry is measured in four bins of the in
We present the first lattice Nf=2+1+1 determination of the tensor form factor $f_T^{D pi(K)}(q^2)$ corresponding to the semileptonic and rare $D to pi(K)$ decays as a function of the squared 4-momentum transfer $q^2$. Together with our recent determi