ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyse the prospect of extending the reach for squarks and gauginos via associated production at a $sqrt{s} = 100$ TeV proton-proton collider, given 3 ab$^{-1}$ integrated luminosity. Depending on the gluino mass, the discovery reach for squarks in associated production with a gluino can be up to 37 TeV for compressed spectra (small gluino-LSP mass splitting), and up to 32 TeV for non-compressed spectra. The discovery reach for Winos can be up to between 3.5 and 6 TeV depending on squark masses and Wino decay kinematics. Binos of up to 1.7 TeV could similarly be discovered. Squark-gaugino associated production could prove to be the discovery mode for supersymmetry at a 100 TeV collider in a large region of parameter space.
Among the different methods to derive particle creation, finding the quantum stress tensor expectation value gives a covariant quantity which can be used for examining the back-reaction issue. However this tensor also includes vacuum polarization in a way that depends on the vacuum chosen. Here we review different aspects of particle creation by looking at energy conservation and at the quantum stress tensor. It will be shown that in the case of general spherically symmetric black holes that have a emph{dynamical horizon}, as occurs in a cosmological context, one cannot have pair creation on the horizon because this violates energy conservation. This confirms the results obtained in other ways in a previous paper [25]. Looking at the expectation value of the quantum stress tensor with three different definitions of the vacuum state, we study the nature of particle creation and vacuum polarization in black hole and cosmological models, and the associated stress energy tensors. We show that the thermal temperature that is calculated from the particle flux given by the quantum stress tensor is compatible with the temperature determined by the affine null parameter approach. Finally, it will be shown that in the spherically symmetric dynamic case, we can neglect the backscattering term and only consider the s-waves term near the future apparent horizon.
One of the outstanding challenges for ion trap quantum information processing is to accurately detect the states of many ions in a scalable fashion. In the particular case of surface traps, geometric constraints make imaging perpendicular to the surf ace appealing for light collection at multiple locations with minimal cross-talk. In this report we describe an experiment integrating Diffractive Optic Elements (DOEs) with surface electrode traps, connected through in-vacuum multi-mode fibers. The square DOEs reported here were all designed with solid angle collection efficiencies of 3.58%; with all losses included a detection efficiency of 0.388% (1.02% excluding the PMT loss) was measured with a single Ca+ ion. The presence of the DOE had minimal effect on the stability of the ion, both in temporal variation of stray electric fields and in motional heating rates.
The causal limit usually considered in cosmology is the particle horizon, delimiting the possibilities of causal connection in the expanding universe. However it is not a realistic indicator of the effective local limits of important interactions in spacetime. We consider here the matter horizon for the Solar System, that is,the comoving region which has contributed matter to our local physical environment. This lies inside the effective domain of dependence, which (assuming the universe is dominated by dark matter along with baryonic matter and vacuum-energy-like dark energy) consists of those regions that have had a significant active physical influence on this environment through effects such as matter accretion and acoustic waves. It is not determined by the velocity of light c, but by the flow of matter perturbations along their world lines and associated gravitational effects. We emphasize how small a region the perturbations which became our Galaxy occupied, relative to the observable universe -- even relative to the smallest-scale perturbations detectable in the cosmic microwave background radiation. Finally, looking to the future of our cosmic domain, we suggest simple dynamical criteria for determining the present domain of influence and the future matter horizon. The former is the radial distance at which our local region is just now separating from the cosmic expansion. The latter represents the limits of growth of the matter horizon in the far future.
Recently there has been much interest in the use of single-jet mass and jet substructure to identify boosted particles decaying hadronically at the LHC. We develop these ideas to address the challenging case of a neutralino decaying to three quarks i n models with baryonic violation of R-parity. These decays have previously been found to be swamped by QCD backgrounds. We demonstrate for the first time that such a decay might be observed directly at the LHC with high significance, by exploiting characteristics of the scales at which its composite jet breaks up into subjets.
93 - G. Auletta , G. F. R. Ellis , 2008
It has been claimed that different types of causes must be considered in biological systems, including top-down as well as same-level and bottom-up causation, thus enabling the top levels to be causally efficacious in their own right. To clarify this issue, important distinctions between information and signs are introduced here and the concepts of information control and functional equivalence classes in those systems are rigorously defined and used to characterise when top down causation by feedback control happens, in a way that is testable. The causally significant elements we consider are equivalence classes of lower level processes, realised in biological systems through different operations having the same outcome within the context of information control and networks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا