ﻻ يوجد ملخص باللغة العربية
One of the outstanding challenges for ion trap quantum information processing is to accurately detect the states of many ions in a scalable fashion. In the particular case of surface traps, geometric constraints make imaging perpendicular to the surface appealing for light collection at multiple locations with minimal cross-talk. In this report we describe an experiment integrating Diffractive Optic Elements (DOEs) with surface electrode traps, connected through in-vacuum multi-mode fibers. The square DOEs reported here were all designed with solid angle collection efficiencies of 3.58%; with all losses included a detection efficiency of 0.388% (1.02% excluding the PMT loss) was measured with a single Ca+ ion. The presence of the DOE had minimal effect on the stability of the ion, both in temporal variation of stray electric fields and in motional heating rates.
In this study, we report the first Cu-filled through silicon via (TSV) integrated ion trap. TSVs are placed directly underneath electrodes as vertical interconnections between ion trap and a glass interposer, facilitating the arbitrary geometry desig
We describe the design, fabrication and testing of a surface-electrode ion trap, which incorporates microwave waveguides, resonators and coupling elements for the manipulation of trapped ion qubits using near-field microwaves. The trap is optimised t
We describe an ex-situ surface-cleaning procedure that is shown to reduce motional heating from ion-trap electrodes. This precleaning treatment, to be implemented immediately before the final assembly and vacuum processing of ion traps, removes surfa
We discuss the design and optimisation of two types of junctions between surface-electrode radiofrequency ion-trap arrays that enable the integration of experiments with sympathetically cooled molecular ions on a monolithic chip device. A detailed de
We describe the design, fabrication, and operation of a novel surface-electrode Paul trap that produces a radio-frequency-null along the axis perpendicular to the trap surface. This arrangement enables control of the vertical trapping potential and c