ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-classical states of light find applications in enhancing the performance of optical interferometric experiments, with notable example of gravitational wave-detectors. Still, the presence of decoherence hinders significantly the performance of qua ntum-enhanced protocols. In this review, we summarize the developments of quantum metrology with particular focus on optical interferometry and derive fundamental bounds on achievable quantum-enhanced precision in optical interferometry taking into account the most relevant decoherence processes including: phase diffusion, losses and imperfect interferometric visibility. We introduce all the necessary tools of quantum optics as well as quantum estimation theory required to derive the bounds. We also discuss the practical attainability of the bounds derived and stress in particular that the techniques of quantum-enhanced interferometry which are being implemented in modern gravitational wave detectors are close to the optimal ones.
We present an experimental scheme based on spontaneous parametric down-conversion to produce multiple photon pairs in maximally entangled polarization states using an arrangement of two type-I nonlinear crystals. By introducing correlated polarizatio n noise in the paths of the generated photons we prepare mixed entangled states whose properties illustrate fundamental results obtained recently in quantum information theory, in particular those concerning bound entanglement and privacy.
When standard light sources are employed, the precision of the phase determination is limited by the shot noise. Quantum entanglement provides means to exceed this limit with the celebrated example of N00N states that saturate the ultimate Heisenberg limit on precision, but at the same time are extremely fragile to losses. In contrast, we provide experimental evidence that appropriately engineered quantum states outperform both standard and N00N states in the precision of phase estimation when losses are present.
We give a detailed discussion of optimal quantum states for optical two-mode interferometry in the presence of photon losses. We derive analytical formulae for the precision of phase estimation obtainable using quantum states of light with a definite photon number and prove that maximization of the precision is a convex optimization problem. The corresponding optimal precision, i.e. the lowest possible uncertainty, is shown to beat the standard quantum limit thus outperforming classical interferometry. Furthermore, we discuss more general inputs: states with indefinite photon number and states with photons distributed between distinguishable time bins. We prove that neither of these is helpful in improving phase estimation precision.
By using a systematic optimization approach we determine quantum states of light with definite photon number leading to the best possible precision in optical two mode interferometry. Our treatment takes into account the experimentally relevant situa tion of photon losses. Our results thus reveal the benchmark for precision in optical interferometry. Although this boundary is generally worse than the Heisenberg limit, we show that the obtained precision beats the standard quantum limit thus leading to a significant improvement compared to classical interferometers. We furthermore discuss alternative states and strategies to the optimized states which are easier to generate at the cost of only slightly lower precision.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا