ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological superconductivity, implying gapless protected surface states, has recently been proposed to exist in the compound CuxBi2Se3. Unfortunately, low diamagnetic shielding fractions and considerable inhomogeneity have been reported in this comp ound. In an attempt to understand and improve on the finite superconducting volume fractions, we have investigated the effects of various growth and post-annealing conditions. With a melt-growth (MG) method, diamagnetic shielding fractions of up to 56% in Cu0.3Bi2Se3 have been obtained, the highest value reported for this method. We investigate the efficacy of various quenching and annealing conditions, finding that quenching from temperatures above 560C is essential for superconductivity, whereas quenching from lower temperatures or not quenching at all is detrimental. A modified floating zone (FZ) method yielded large single crystals but little superconductivity. Even after annealing and quenching, FZ-grown samples had much less chance of being superconducting than MG-grown samples. From the low shielding fractions in FZ-grown samples and the quenching dependence, we suggest that a metastable secondary phase having a small volume fraction in most of the samples may be responsible for the superconductivity.
In three-dimensional topological insulators (3D TI) nanowires, transport occurs via gapless surface states where the spin is fixed perpendicular to the momentum[1-6]. Carriers encircling the surface thus acquire a pi Berry phase, which is predicted t o open up a gap in the lowest-energy 1D surface subband. Inserting a magnetic flux ({Phi}) of h/2e through the nanowire should cancel the Berry phase and restore the gapless 1D mode[7-8]. However, this signature has been missing in transport experiments reported to date[9-11]. Here, we report measurements of mechanically-exfoliated 3D TI nanowires which exhibit Aharonov-Bohm oscillations consistent with topological surface transport. The use of low-doped, quasi-ballistic devices allows us to observe a minimum conductance at {Phi} = 0 and a maximum conductance reaching e^2/h at {Phi} = h/2e near the lowest subband (i.e. the Dirac point), as well as the carrier density dependence of the transport.
Indium substitution turns the topological crystalline insulator (TCI) Pb$_{0.5}$Sn$_{0.5}$Te into a possible topological superconductor. To investigate the effect of the indium concentration on the crystal structure and superconducting properties of (Pb$_{0.5}$Sn$_{0.5}$)$_{1-x}$In$_{x}$Te, we have grown high-quality single crystals using a modified floating-zone method, and have performed systematic studies for indium content in the range $0leq xleq 0.35$. We find that the single crystals retain the rock salt structure up to the solubility limit of indium ($xsim0.30$). Experimental dependences of the superconducting transition temperature ($T_c$) and the upper critical magnetic field ($H_{c2}$) on the indium content $x$ have been measured. The maximum $T_c$ is determined to be 4.7 K at $x=0.30$, with $mu_0H_{c2}(T=0)approx 5$ T.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا