ترغب بنشر مسار تعليمي؟ اضغط هنا

[ABRIDGED] $omega$ Centauri (NGC 5139) contains large numbers of variable stars of different types and, in particular, more than a hundred RR Lyrae stars. We have conducted a variability survey of $omega$ Cen in the NIR, using ESOs 4.1m Visible and I nfrared Survey Telescope for Astronomy (VISTA). This is the first paper of a series describing our results. $omega$ Cen was observed using VIRCAM mounted on VISTA. A total of 42 and 100 epochs in $J$ and $K_{rm S}$, respectively, were obtained, distributed over a total timespan of 352 days. PSF photometry was performed, and periods of the known variable stars were improved when necessary using an ANOVA analysis. An unprecedented homogeneous and complete NIR catalogue of RR Lyrae stars in the field of $omega$ Cen was collected, allowing us to study, for the first time, all the RR Lyrae stars associated to the cluster, except 4 located far away from the cluster center. Membership status, subclassifications between RRab and RRc subtypes, periods, amplitudes, and mean magnitudes were derived for all the stars in our sample. Additionally, 4 new RR Lyrae stars were discovered, 2 of them with high probability of being cluster members. The distribution of $omega$ Cen stars in the Bailey (period-amplitude) diagram is also discussed. Reference lines in this plane, for both Oosterhoff type I (OoI) and II (OoII) components, are provided. In the present paper, we clarify the status of many (candidate) RR Lyrae stars that had been unclear in previous studies. This includes stars with anomalous positions in the color-magnitude diagram, uncertain periods or/and variability types, and possible field interlopers. We conclude that $omega$ Cen hosts a total of 88 RRab and 101 RRc stars, for a grand total of 189 likely members. We confirm that most RRab stars in the cluster belong to an OoII component, as previously found using visual data.
Context. The Vista Variables in the Via Lactea (VVV) ESO Public Survey is a variability survey of the Milky Way bulge and an adjacent section of the disk carried out from 2010 on ESO Visible and Infrared Survey Telescope for Astronomy (VISTA). VVV wi ll eventually deliver a deep near-IR atlas with photometry and positions in five passbands (ZYJHK_S) and a catalogue of 1-10 million variable point sources - mostly unknown - which require classifications. Aims. The main goal of the VVV Templates Project, that we introduce in this work, is to develop and test the machine-learning algorithms for the automated classification of the VVV light-curves. As VVV is the first massive, multi-epoch survey of stellar variability in the near-infrared, the template light-curves that are required for training the classification algorithms are not available. In the first paper of the series we describe the construction of this comprehensive database of infrared stellar variability. Methods. First we performed a systematic search in the literature and public data archives, second, we coordinated a worldwide observational campaign, and third we exploited the VVV variability database itself on (optically) well-known stars to gather high-quality infrared light-curves of several hundreds of variable stars. Results. We have now collected a significant (and still increasing) number of infrared template light-curves. This database will be used as a training-set for the machine-learning algorithms that will automatically classify the light-curves produced by VVV. The results of such an automated classification will be covered in forthcoming papers of the series.
57 - R. Contreras 2010
We present new time-series CCD photometry, in the B and V bands, for the moderately metal-rich ([Fe/H] ~ -1.3) Galactic globular cluster (GC) M62 (NGC 6266). The present dataset is the largest obtained so far for this cluster, and consists of 168 ima ges per filter, obtained with the Warsaw 1.3m telescope at the Las Campanas Observatory (LCO) and the 1.3m telescope of the Cerro Tololo Inter-American Observatory (CTIO), in two separate runs over the time span of three months. The procedure adopted to detect the variable stars was the optimal image subtraction method (ISIS v2.2), as implemented by Alard. The photometry was performed using both ISIS and DAOPHOT/ALLFRAME. We have identified 245 variable stars in the cluster fields that have been analyzed so far, of which 179 are new discoveries. Of these variables, 133 are fundamental mode RR Lyrae stars (RRab), 76 are first overtone (RRc) pulsators, 4 are type II Cepheids, 25 are long-period variables (LPV), 1 is an eclipsing binary, and 6 are not yet well classified. Such a large number of RR Lyrae stars places M62 among the top two most RR Lyrae-rich (in the sense of total number of RR Lyrae stars present) GCs known in the Galaxy, second only to M3 (NGC 5272) with a total of 230 known RR Lyrae stars. Since this study covers most but not all of the cluster area, it is not unlikely that M62 is in fact the most RR Lyrae-rich GC in the Galaxy. In like vein, we were also able to detect the largest sample of LPVs known in a Galactic GC. We analyze a variety of Oosterhoff type indicators for the cluster, and conclude that M62 is an Oosterhoff type I system. This is in good agreement with the moderately high metallicity of the cluster, in spite of its predominantly blue horizontal branch morphology -- which is more typical of Oosterhoff type II systems. We thus conclude that metallicity plays a key role in defining Oosterhoff type. [abridged]
New candidate variable stars have been identified in the Small Magellanic Cloud cluster NGC121, by applying both the image subtraction technique (ISIS, Alard 2000) and the Welch & Stetson (1993) detection method to HST WFPC2 archive and ACS proprieta ry images of the cluster. The new candidate variable stars are located from the clusters Main Sequence up to Red Giant Branch. Twenty-seven of them fall on the cluster Horizontal Branch and are very likely RR Lyrae stars. They include the few RR Lyrae stars already discussed by Walker & Mack (1988). We also detected 20 Dwarf Cepheid candidates in the central region of NGC121. Our results confirm the true globular cluster nature of NGC121, a cluster that is at the young end of the Galactic globulars age range.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا