ترغب بنشر مسار تعليمي؟ اضغط هنا

The existence of strong lensing systems with Einstein radii (Re) covering the full mass spectrum, from ~1-2 (produced by galaxy scale dark matter haloes) to >10 (produced by galaxy cluster scale haloes) have long been predicted. Many lenses with Re a round 1-2 and above 10 have been reported but very few in between. In this article, we present a sample of 13 strong lensing systems with Re in the range 3- 8, i.e. systems produced by galaxy group scale dark matter haloes, spanning a redshift range from 0.3 to 0.8. This opens a new window of exploration in the mass spectrum, around 10^{13}- 10^{14} M_{sun}, which is a crucial range for understanding the transition between galaxies and galaxy clusters. Our analysis is based on multi-colour CFHTLS images complemented with HST imaging and ground based spectroscopy. Large scale properties are derived from both the light distribution of the elliptical galaxies group members and weak lensing of the faint background galaxy population. On small scales, the strong lensing analysis yields Einstein radii between 2.5 and 8. On larger scales, the strong lenses coincide with the peak of the light distribution, suggesting that mass is traced by light. Most of the luminosity maps have complicated shapes, indicating that these intermediate mass structures are dynamically young. Fitting the reduced shear with a Singular Isothermal Sphere, we find sigma ~ 500 km/s and an upper limit of ~900 km/s for the whole sample. The mass to light ratio for the sample is found to be M/L_i ~ 250 (solar units, corrected for evolution), with an upper limit of 500. This can be compared to mass to light ratios of small groups (with sigma ~ 300 km/s and galaxy clusters with sigma > 1000 km/s, thus bridging the gap between these mass scales.
Based on a sample of 355 quasars with significant optical polarization, we found that quasar polarization vectors are not randomly oriented over the sky as naturally expected. The probability that the observed distribution of polarization angles is d ue to chance is lower than 0.1%. The polarization vectors of the light from quasars are aligned although the sources span huge regions of the sky (~ 1 Gpc). Groups of quasars located along similar lines of sight but at different redshifts (typically z ~ 0.5 and z ~ 1.5) are characterized by different preferred directions of polarization. These characteristics make the observed alignment effect difficult to explain in terms of a local contamination by interstellar polarization in our Galaxy. Interpreted in terms of a cosmological-size effect, we show that the dichroism and birefringence predicted by a mixing between photons and very light pseudoscalar particles within a magnetic field can qualitatively reproduce the observations. We find that circular polarization measurements could help constrain this mechanism.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا