ترغب بنشر مسار تعليمي؟ اضغط هنا

Microfabricated ion traps are a major advancement towards scalable quantum computing with trapped ions. The development of more versatile ion-trap designs, in which tailored arrays of ions are positioned in two dimensions above a microfabricated surf ace, would lead to applications in fields as varied as quantum simulation, metrology and atom-ion interactions. Current surface ion traps often have low trap depths and high heating rates, due to the size of the voltages that can be applied to them, limiting the fidelity of quantum gates. Here we report on a fabrication process that allows for the application of very high voltages to microfabricated devices in general and use this advance to fabricate a 2D ion trap lattice on a microchip. Our microfabricated architecture allows for reliable trapping of 2D ion lattices, long ion lifetimes, rudimentary shuttling between lattice sites and the ability to deterministically introduce defects into the ion lattice.
With the demand for improved performance in microfabricated devices, the necessity to apply greater electric fields and voltages becomes evident. When operating in vacuum, the voltage is typically limited by surface flashover forming along the surfac e of a dielectric. By modifying the fabrication process we have discovered it is possible to more than double the flashover voltage. Our finding has significant impact on the realization of next-generation micro- and nano-fabricated devices and for the fabrication of on-chip ion trap arrays for the realization of scalable ion quantum technology.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا