ترغب بنشر مسار تعليمي؟ اضغط هنا

138 - R. Arnold , C. Augier , J.D. Baker 2015
The NEMO-3 detector, which had been operating in the Modane Underground Laboratory from 2003 to 2010, was designed to search for neutrinoless double $beta$ ($0 ubetabeta$) decay. We report final results of a search for $0 ubetabeta$ decays with $6.91 4$ kg of $^{100}$Mo using the entire NEMO-3 data set with a detector live time of $4.96$ yr, which corresponds to an exposure of 34.3 kg$cdot$yr. We perform a detailed study of the expected background in the $0 ubetabeta$ signal region and find no evidence of $0 ubetabeta$ decays in the data. The level of observed background in the $0 ubetabeta$ signal region $[2.8-3.2]$ MeV is $0.44 pm 0.13$ counts/yr/kg, and no events are observed in the interval $[3.2-10]$ MeV. We therefore derive a lower limit on the half-life of $0 ubetabeta$ decays in $^{100}$Mo of $T_{1/2}(0 ubetabeta)> 1.1 times 10^{24}$ yr at the $90%$ Confidence Level, under the hypothesis of light Majorana neutrino exchange. Depending on the model used for calculating nuclear matrix elements, the limit for the effective Majorana neutrino mass lies in the range $langle m_{ u} rangle < 0.33$--$0.62$ eV. We also report constraints on other lepton-number violating mechanisms for $0 ubetabeta$ decays.
We report the results of a search for the neutrinoless double-$beta$ decay (0$ ubetabeta$) of $^{100}$Mo, using the NEMO-3 detector to reconstruct the full topology of the final state events. With an exposure of 34.7 kg.y, no evidence for the 0$ ubet abeta$ signal has been found, yielding a limit for the light Majorana neutrino mass mechanism of $T_{1/2}(0 ubetabeta)>1.1 times 10^{24}$ years (90% C.L.) once both statistical and systematic uncertainties are taken into account. Depending on the Nuclear Matrix Elements this corresponds to an upper limit on the Majorana effective neutrino mass of $< m_{ u} > < 0.3-0.9$ eV (90% C.L.). Constraints on other lepton number violating mechanisms of 0$ ubetabeta$ decays are also given. Searching for high-energy double electron events in all suitable sources of the detector, no event in the energy region [3.2-10] MeV is observed for an exposure of 47 kg.y.
95 - R. Arnold , J. Baker (3 2011
This Letter reports results from the NEMO-3 experiment based on an exposure of 1275 days with 661g of 130Te in the form of enriched and natural tellurium foils. The double beta decay rate of 130Te is found to be greater than zero with a significance of 7.7 standard deviations and the half-life is measured to be T1/2 = (7.0 +/- 0.9(stat) +/- 1.1(syst)) x 10^{20} yr. This represents the most precise measurement of this half-life yet published and the first real-time observation of this decay.
62 - R. Arnold , C. Augier , J. Baker 2010
The possibility to probe new physics scenarios of light Majorana neutrino exchange and right-handed currents at the planned next generation neutrinoless double beta decay experiment SuperNEMO is discussed. Its ability to study different isotopes and track the outgoing electrons provides the means to discriminate different underlying mechanisms for the neutrinoless double beta decay by measuring the decay half-life and the electron angular and energy distributions.
The development of BiPo detectors is dedicated to the measurement of extremely high radiopurity in $^{208}$Tl and $^{214}$Bi for the SuperNEMO double beta decay source foils. A modular prototype, called BiPo-1, with 0.8 $m^2$ of sensitive surface are a, has been running in the Modane Underground Laboratory since February, 2008. The goal of BiPo-1 is to measure the different components of the background and in particular the surface radiopurity of the plastic scintillators that make up the detector. The first phase of data collection has been dedicated to the measurement of the radiopurity in $^{208}$Tl. After more than one year of background measurement, a surface activity of the scintillators of $mathcal{A}$($^{208}$Tl) $=$ 1.5 $mu$Bq/m$^2$ is reported here. Given this level of background, a larger BiPo detector having 12 m$^2$ of active surface area, is able to qualify the radiopurity of the SuperNEMO selenium double beta decay foils with the required sensitivity of $mathcal{A}$($^{208}$Tl) $<$ 2 $mu$Bq/kg (90% C.L.) with a six month measurement.
The main physics programme of the International Linear Collider (ILC) requires a measurement of the beam energy at the interaction point with an accuracy of $10^{-4}$ or better. To achieve this goal a magnetic spectrometer using high resolution beam position monitors (BPMs) has been proposed. This paper reports on the cavity BPM system that was deployed to test this proposal. We demonstrate sub-micron resolution and micron level stability over 20 hours for a $1m$ long BPM triplet. We find micron-level stability over 1 hour for 3 BPM stations distributed over a $30m$ long baseline. The understanding of the behaviour and response of the BPMs gained from this work has allowed full spectrometer tests to be carried out.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا