ترغب بنشر مسار تعليمي؟ اضغط هنا

87 - R. A. Scalzo , A. J. Ruiter , 2014
The ejected mass distribution of type Ia supernovae directly probes progenitor evolutionary history and explosion mechanisms, with implications for their use as cosmological probes. Although the Chandrasekhar mass is a natural mass scale for the expl osion of white dwarfs as type Ia supernovae, models allowing type Ia supernovae to explode at other masses have attracted much recent attention. Using an empirical relation between the ejected mass and the light curve width, we derive ejected masses $M_mathrm{ej}$ and $^{56}$Ni masses $M_mathrm{Ni}$ for a sample of 337 type Ia supernovae with redshifts $z < 0.7$ used in recent cosmological analyses. We use hierarchical Bayesian inference to reconstruct the joint $M_mathrm{ej}$-$M_mathrm{Ni}$ distribution, accounting for measurement errors. The inferred marginal distribution of $M_mathrm{ej}$ has a long tail towards sub-Chandrasekhar masses, but cuts off sharply above 1.4 $M_odot$. Our results imply that 25%-50% of normal type Ia supernovae are inconsistent with Chandrasekhar-mass explosions, with almost all of these being sub-Chandrasekhar-mass; super-Chandrasekhar-mass explosions make up no more than 1% of all spectroscopically normal type Ia supernovae. We interpret the type Ia supernova width-luminosity relation as an underlying relation between $M_mathrm{ej}$ and $M_mathrm{Ni}$, and show that the inferred relation is not naturally explained by the predictions of any single known explosion mechanism.
We present photospheric-phase observations of LSQ12gdj, a slowly-declining, UV-bright Type Ia supernova. Classified well before maximum light, LSQ12gdj has extinction-corrected absolute magnitude $M_B = -19.8$, and pre-maximum spectroscopic evolution similar to SN 1991T and the super-Chandrasekhar-mass SN 2007if. We use ultraviolet photometry from Swift, ground-based optical photometry, and corrections from a near-infrared photometric template to construct the bolometric (1600-23800 AA) light curve out to 45 days past $B$-band maximum light. We estimate that LSQ12gdj produced $0.96 pm 0.07$ $M_odot$ of $^{56}$Ni, with an ejected mass near or slightly above the Chandrasekhar mass. As much as 27% of the flux at the earliest observed phases, and 17% at maximum light, is emitted bluewards of 3300 AA. The absence of excess luminosity at late times, the cutoff of the spectral energy distribution bluewards of 3000 AA, and the absence of narrow line emission and strong Na I D absorption all argue against a significant contribution from ongoing shock interaction. However, up to 10% of LSQ12gdjs luminosity near maximum light could be produced by the release of trapped radiation, including kinetic energy thermalized during a brief interaction with a compact, hydrogen-poor envelope (radius $< 10^{13}$ cm) shortly after explosion; such an envelope arises generically in double-degenerate merger scenarios.
We present 65 optical spectra of the Type Ia supernova SN 2012fr, of which 33 were obtained before maximum light. At early times SN 2012fr shows clear evidence of a high-velocity feature (HVF) in the Si II 6355 line which can be cleanly decoupled fro m the lower velocity photospheric component. This Si II 6355 HVF fades by phase -5; subsequently, the photospheric component exhibits a very narrow velocity width and remains at a nearly constant velocity of v~12,000 km/s until at least 5 weeks after maximum brightness. The Ca II infrared (IR) triplet exhibits similar evidence for both a photospheric component at v~12,000 km/s with narrow line width and long velocity plateau, as well as a high-velocity component beginning at v~31,000 km/s two weeks before maximum. SN 2012fr resides on the border between the shallow silicon and core-normal subclasses in the Branch et al. (2009) classification scheme, and on the border between normal and high-velocity SNe Ia in the Wang et al. (2009a) system. Though it is a clear member of the low velocity gradient (LVG; Benetii et al., 2005) group of SNe Ia and exhibits a very slow light-curve decline, it shows key dissimilarities with the overluminous SN 1991T or SN 1999aa subclasses of SNe Ia. SN 2012fr represents a well-observed SN Ia at the luminous end of the normal SN Ia distribution, and a key transitional event between nominal spectroscopic subclasses of SNe Ia.
We present photometric and spectroscopic observations of SN 2007if, an overluminous (M_V = -20.4), red (B-V = 0.16 at B-band maximum), slow-rising (t_rise = 24 days) type Ia supernova in a very faint (M_g = -14.10) host galaxy. A spectrum at 5 days p ast B-band maximum light is a direct match to the super-Chandrasekhar-mass candidate SN Ia 2003fg, showing Si II and C II at ~9000 km/s. A high signal-to-noise co-addition of the SN spectral time series reveals no Na I D absorption, suggesting negligible reddening in the host galaxy, and the late-time color evolution has the same slope as the Lira relation for normal SNe Ia. The ejecta appear to be well mixed, with no strong maximum in I-band and a diversity of iron-peak lines appearing in near-maximum-light spectra. SN2007 if also displays a plateau in the Si II velocity extending as late as +10 days, which we interpret as evidence for an overdense shell in the SN ejecta. We calculate the bolometric light curve of the SN and use it and the ion{Si}{2} velocity evolution to constrain the mass of the shell and the underlying SN ejecta, and demonstrate that SN2007 if is strongly inconsistent with a Chandrasekhar-mass scenario. Within the context of a tamped detonation model appropriate for double-degenerate mergers, and assuming no host extinction, we estimate the total mass of the system to be 2.4 +/- 0.2 solar masses, with 1.6 +/- 0.1 solar masses of nickel-56 and with 0.3-0.5 solar masses in the form of an envelope of unburned carbon/oxygen. Our modeling demonstrates that the kinematics of shell entrainment provide a more efficient mechanism than incomplete nuclear burning for producing the low velocities typical of super-Chandrasekhar-mass SNeIa.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا