ترغب بنشر مسار تعليمي؟ اضغط هنا

We have determined the O/H and N/O of a sample of 122751 SFGs from the DR7 of the SDSS. For all these galaxies we have also determined their morphology and their SFH using the code STARLIGHT. The comparison of the chemical abundance with the SFH allo ws us to describe the chemical evolution in the nearby universe (z < 0.25) in a manner which is consistent with the formation of their stellar populations and morphologies. A 45% of the SFGs in our sample show an excess of abundance in nitrogen relative to their metallicity. We also find this excess to be accompanied by a deficiency of oxygen, which suggests that this could be the result of effective starburst winds. However, we find no difference in the mode of star formation of the nitrogen rich and nitrogen poor SFGs. Our analysis suggests they all form their stars through a succession of bursts of star formation extended over a few Gyr period. What produces the chemical differences between these galaxies seems therefore to be the intensity of the bursts: the galaxies with an excess of nitrogen are those that are presently experiencing more intense bursts, or have experienced more intense bursts in their past. We also find evidence relating the chemical evolution process to the formation of the galaxies: the galaxies with an excess of nitrogen are more massive, have more massive bulges and earlier morphologies than those showing no excess. As a possible explanation we propose that the lost of metals consistent with starburst winds took place during the formation of the galaxies, when their potential wells were still building up, and consequently were weaker than today, making starburst winds more efficient and independent of the final mass of the galaxies. In good agreement with this interpretation, we also find evidence consistent with downsizing, according to which the more massive SFGs formed before the less massive ones.
We compare the Spectral Energy Distribution (SED) of radio-loud and radio-quiet AGNs in three different samples observed with SDSS: radio-loud AGNs (RLAGNs), Low Luminosity AGNs (LLAGNs) and AGNs in isolated galaxies (IG-AGNs). All these galaxies hav e similar optical spectral characteristics. The median SED of the RLAGNs is consistent with the characteristic SED of quasars, while that of the LLAGNs and IG-AGNs are consistent with the SED of LINERs, with a lower luminosity in the IG-AGNs than in the LLAGNs. We infer the masses of the black holes (BHs) from the bulge masses. These increase from the IG-AGNs to the LLAGNs and are highest for the RLAGNs. All these AGNs show accretion rates near or slightly below 10% of the Eddington limit, the differences in luminosity being solely due to different BH masses. Our results suggests there are two types of AGNs, radio quiet and radio loud, differing only by the mass of their bulges or BHs.
We apply a stellar population synthesis code to the spectra of a large sample of SDSS galaxies to classify these according to their activity (using emission-line diagnostic diagrams), environment (using catalogues of isolated and cluster galaxies), a nd using parameters that correlate with their morphology.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا