ترغب بنشر مسار تعليمي؟ اضغط هنا

Heterostructures including the members of the 6.1{AA} semiconductor family (AlSb, GaSb, and InAs) are used in infrared optoelectronic devices as well as a variety of other applications. Short-period superlattices of these materials are also of intere st for creating composite materials with designer infrared dielectric functions. The conditions needed to create sharp InAs/GaSb and InAs/AlSb interfaces are well known, but the AlSb/GaSb interface is much less well-understood. In this article, we test a variety of interventions designed to improve interface sharpness in AlSb/GaSb short-period superlattices. These interventions include substrate temperature, III:Sb flux ratio, and the use of a bismuth surfactant. Superlattices are characterized by high-resolution x-ray diffraction and infrared spectroscopy. We find that AlSb/GaSb short-period superlattices have a wide growth window over which sharp interfaces can be obtained.
For ExAO instruments for the Giant Segmented Mirror Telescopes (GSMTs), alternative architectures of WFS are under consideration because there is a tradeoff between detector size, speed, and noise that reduces the performance of GSMT-ExAO wavefront c ontrol. One option under consideration for a GSMT-ExAO wavefront sensor is a three-sided PWFS (3PWFS). The 3PWFS creates three copies of the telescope pupil for wavefront sensing, compared to the conventional four-sided PWFS (4PWFS) which uses four pupils. The 3PWFS uses fewer detector pixels than the 4PWFS and should therefore be less sensitive to read noise. Here we develop a mathematical formalism based on the diffraction theory description of the Foucault knife edge test that predicts the intensity pattern after the PWFS. Our formalism allows us to calculate the intensity in the pupil images formed by the PWFS in the presence of phase errors corresponding to arbitrary Fourier modes. We then use the Object Oriented MATLAB Adaptive Optics toolbox (OOMAO) to simulate an end-to-end model of an adaptive optics system using a PWFS with modulation and compare the performance of the 3PWFS to the 4PWFS. In the case of a low read noise detector, the Strehl ratios of the 3PWFS and 4PWFS are within 0.01. When we included higher read noise in the simulation, we found a Strehl ratio gain of 0.036 for the 3PWFS using Raw Intensity over the 4PWFS using Slopes Maps at a stellar magnitude of 10. At the same magnitude, the 4PWFS RI also outperformed the 4PWFS SM, but the gain was only 0.012 Strehl. This is significant because 4PWFS using Slopes Maps is how the PWFS is conventionally used for AO wavefront sensing. We have found that the 3PWFS is a viable wavefront sensor that can fully reconstruct a wavefront and produce a stable closed-loop with correction comparable to that of a 4PWFS, with modestly better performance for high read-noise detectors.
This article reports quasi-continuous transiting events towards WD 1054-226 at d=36.2 pc and V=16.0 mag, based on simultaneous, high-cadence, multi-wavelength imaging photometry using ULTRACAM over 18 nights from 2019 to 2020 March. The predominant p eriod is 25.02 h, and corresponds to a circular orbit with blackbody Teq = 323 K, where a planetary surface can nominally support liquid water. The light curves reveal remarkable night-to-night similarity, with changes on longer timescales, and lack any transit-free segments of unocculted starlight. The most pronounced dimming components occur every 23.1 min -- exactly the 65th harmonic of the fundamental period -- with depths of up to several per cent, and no evident color dependence. Myriad additional harmonics are present, as well as at least two transiting features with independent periods, one longer and one shorter than, yet both similar to, the underlying period. High-resolution optical spectra are consistent with stable, photospheric absorption by multiple, refractory metal species, with no indication of circumstellar gas. Spitzer observations demonstrate a lack of detectable dust emission, suggesting that the otherwise hidden circumstellar disk orbiting WD 1054-226 may be typical of polluted white dwarfs, and only detected via favorable geometry. Future observations are required to constrain the orbital eccentricity, but even if periastron is near the Roche limit, sublimation cannot drive mass loss in refractory parent bodies, and collisional disintegration is necessary for dust production.
Gyarfas conjectured in 2011 that every $r$-edge-colored $K_n$ contains a monochromatic component of bounded (perhaps three) diameter on at least $n/(r-1)$ vertices. Letzter proved this conjecture with diameter four. In this note we improve the re sult in the case of $r=3$: We show that in every $3$-edge-coloring of $K_n$ either there is a monochromatic component of diameter at most three on at least $n/2$ vertices or every color class is spanning and has diameter at most four.
The jets emanating from the centers of active galactic nuclei (AGN) are among the most energetic objects in the universe. Investigating how the morphology of the jets synchrotron emission depends on the magnetic nature of the jets relativistic plasma is fundamental to the comparison between numerical simulations and the observed polarization of relativistic jets. Through the use of 3D relativistic magnetohydrodynamic (RMHD) jet simulations (computed using the PLUTO code) we study how the jets synchrotron emission depends upon the morphology of the jets magnetic field structure. Through the application of polarized radiative transfer and ray-tracing (via the RADMC-3D code) we create synthetic radio maps of the jets total intensity as well as the linearly and circularly polarized intensity for each jet simulation. In particular, we create synthetic ray-traced images of the jets polarized synchrotron emission when the jet carries a predominantly poloidal, helical, and toroidal magnetic field. We also explore several scaling relations in which the underlying electron power-law distribution is set proportional to: (i) the jets thermal plasma density, (ii) the jets internal energy density, and (iii) the jets magnetic energy density. We find that: (i) the jet emission is edge brightened when the magnetic field is toroidal in nature and spine brightened when the magnetic field is poloidal in nature, (ii) the circularly polarized emission exhibits both negative and positive signs for the toroidal magnetic field morphology at an inclination of 45{deg} as well as 5{deg}, and (iii) the relativistic jets emission is largely independent of different emission scaling relations when the ambient medium is excluded.
Accreting magnetic white dwarfs offer an opportunity to understand the interplay between spin-up and spin-down torques in binary systems. Monitoring of the white dwarf spin may reveal whether the white dwarf spin is currently in a state of near-equil ibrium, or of uni-directional evolution towards longer or shorter periods, reflecting the recent history of the system and providing constraints for evolutionary models. This makes the monitoring of the spin history of magnetic white dwarfs of high interest. In this paper we report the results of a campaign of follow-up optical photometry to detect and track the 39 sec white dwarf spin pulses recently discovered in Hubble Space Telescope data of the cataclysmic variable V1460 Her. We find the spin pulsations to be present in g-band photometry at a typical amplitude of 0.4%. Under favourable observing conditions, the spin signal is detectable using 2-meter class telescopes. We measured pulse-arrival times for all our observations, which allowed us to derive a precise ephemeris for the white dwarf spin. We have also derived an orbital modulation correction that can be applied to the measurements. With our limited baseline of just over four years, we detect no evidence yet for spin-up or spin-down of the white dwarf, obtaining a lower limit of |P/Pdot|> 4e7 years, which is already 4 to 8 times longer than the timescales measured in two other cataclysmic variable systems containing rapidly rotating white dwarfs, AE Aqr and AR Sco.
Herewith we discuss a network model of the ferroptosis avascular and vascular tumor growth based on our previous proposed framework. Chiefly, ferroptosis should be viewed as a first order phase transition characterized by a supercritical Andronov Hop f bifurcation, with the emergence of limit cycle. The increase of the population of the oxidized PUFA fragments, take as the control parameter, involves an inverse Feigenbaum, (a cascade of saddle foci Shilnikovs bifurcations) scenario, which results in the stabilization of the dynamics and in a decrease of complexity.
We present optical photometry of the cataclysmic variable LAMOST J024048.51+195226.9 taken with the high-speed, five-band CCD camera HiPERCAM on the 10.4 m Gran Telescopio Canarias (GTC). We detect pulsations originating from the spin of its white dw arf, finding a spin period of 24.9328(38)s. The pulse amplitude is of the order of 0.2% in the g-band, below the detection limits of previous searches. This detection establishes LAMOST J024048.51+195226.9 as only the second white dwarf magnetic propeller system, a twin of its long-known predecessor, AE Aquarii. At 24.93s, the white dwarf in LAMOST J024048.51+195226.9 has the shortest known spin period of any cataclysmic variable star. The white dwarf must have a mass of at least 0.7MSun to sustain so short a period. The observed faintest u-band magnitude sets an upper limit on the white dwarfs temperature of ~25000K. The pulsation amplitudes measured in the five HiPERCAM filters are consistent with an accretion spot of ~30000K covering ~2% of the white dwarfs visible area, although much hotter and smaller spots cannot be ruled out.
We discuss the necessary steps for implementing an angularly ordered (AO) electroweak (EW) parton shower in Herwig 7 multi-purpose event generator. This includes calculating the helicity-dependent quasi-collinear EW branching functions that correspon d to the full range of final-state EW parton shower, in addition to the initial-state EW gauge vector boson radiations. The results are successfully embedded in the AO Herwig 7 shower algorithm and have undergone a set of comprehensive and conclusive performance tests. Furthermore, we have used this EW parton shower algorithm, alongside the existing $QCD+QED$ AO shower, to predict the angular distributions of $W^{pm}$ bosons in LHC events with high transverse momentum jets. These results are compared against the explicitly generated underlying events as well as the existing ATLAS data to show the effectiveness of the newly implemented $QCD+QED+EW$ AO parton shower scheme.
It was first observed in the 1970s that the dwarf galaxies surrounding our Milky Way, so-called satellites, appear to be arranged in a thin, vast plane. Similar discoveries have been made around additional galaxies in the local Universe such as Andro meda, Centaurus A, and potentially M83. In the specific cases with available kinematic data, the dwarf satellites also appear to preferentially co-orbit their massive host galaxy. Planes of satellites are rare in the lambda cold dark matter ($Lambda$CDM) paradigm, although they may be a natural consequence of projection effects. Such a phase-space correlation, however, remains difficult to explain. In this work we analyzed the 2D spatial distribution of 2210 dwarf galaxies around early-type galaxies (ETGs) in the low-to-medium density fields of the Mass Assembly of early-Type GaLAxies with their fine Structures (MATLAS) survey. Under the assumption that the dwarfs are satellite members of the central massive ETG, we identified flattened structures using both a variation in the Hough transform and total least square (TLS) fitting. In 119 satellite systems, we find 31 statistically significant flattened dwarf structures using a combination of both methods with subsequent Monte Carlo (MC) simulations with random data. The vast majority of these dwarf structures lie within the estimated virial radii of the massive host. The major axes of these systems are aligned better than 30{deg} with the estimated orientation of the large-scale structure in nine (50%) cases. Additional distance measurements and future kinematic studies will be required to confirm the planar nature of these structures and to determine if they are corotating systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا