ترغب بنشر مسار تعليمي؟ اضغط هنا

80 - Piao Zeng , Qingqing Wu , 2021
This paper considers an intelligent reflecting surface(IRS)-aided wireless powered communication network (WPCN), where devices first harvest energy from a power station (PS) in the downlink (DL) and then transmit information using non-orthogonal mult iple access (NOMA) to a data sink in the uplink (UL). However, most existing works on WPCNs adopted the simplified linear energy-harvesting model and also cannot guarantee strict user quality-of-service requirements. To address these issues, we aim to minimize the total transmit energy consumption at the PS by jointly optimizing the resource allocation and IRS phase shifts over time, subject to the minimum throughput requirements of all devices. The formulated problem is decomposed into two subproblems, and solved iteratively in an alternative manner by employing difference of convex functions programming, successive convex approximation, and penalty-based algorithm. Numerical results demonstrate the significant performance gains achieved by the proposed algorithm over benchmark schemes and reveal the benefits of integrating IRS into WPCNs. In particular, employing different IRS phase shifts over UL and DL outperforms the case with static IRS beamforming.
124 - Yifan Liu , Bin Duo , Qingqing Wu 2021
This paper investigates an aerial reconfigurable intelligent surface (RIS)-aided communication system under the probabilistic line-of-sight (LoS) channel, where an unmanned aerial vehicle (UAV) equipped with an RIS is deployed to assist two ground no des in their information exchange. An optimization problem with the objective of maximizing the minimum average achievable rate is formulated to design the communication scheduling, the RISs phase, and the UAV trajectory. To solve such a non-convex problem, we propose an efficient iterative algorithm to obtain its suboptimal solution. Simulation results show that our proposed design significantly outperforms the existing schemes and provides new insights into the elevation angle and distance trade-off for the UAV-borne RIS communication system.
132 - Meng Hua , Qingqing Wu 2021
This paper studies intelligent reflecting surface (IRS)-aided full-duplex (FD) wireless-powered communication network (WPCN), where a hybrid access point (HAP) broadcasts energy signals to multiple devices for their energy harvesting in the downlink (DL) and meanwhile receives information signals in the uplink (UL) with the help of IRS. Particularly, we propose three types of IRS beamforming configurations to strike a balance between the system performance and signaling overhead as well as implementation complexity. We first propose the fully dynamic IRS beamforming, where the IRS phase-shift vectors vary with each time slot for both DL wireless energy transfer (WET) and UL wireless information transmission (WIT). To further reduce signaling overhead and implementation complexity, we then study two special cases, namely, partially dynamic IRS beamforming and static IRS beamforming. For the former case, two different phase-shift vectors can be exploited for the DL WET and the UL WIT, respectively, whereas for the latter case, the same phase-shift vector needs to be applied for both DL and UL transmissions. We aim to maximize the system throughput by jointly optimizing the time allocation, HAP transmit power, and IRS phase shifts for the above three cases. Two efficient algorithms based on alternating optimization and penalty-based algorithms are respectively proposed for both perfect self-interference cancellation (SIC) case and imperfect SIC case by applying successive convex approximation and difference-of-convex optimization techniques. Simulation results demonstrate the benefits of IRS for enhancing the performance of FD-WPCN, and also show that the IRS-aided FD-WPCN is able to achieve significantly performance gain compared to its counterpart with half-duplex when the self-interference (SI) is properly suppressed.
An intelligent reflecting surface (IRS)-aided wireless powered mobile edge computing (WP-MEC) system is conceived, where each devices computational task can be divided into two parts for local computing and offloading to mobile edge computing (MEC) s ervers, respectively. Both time division multiple access (TDMA) and non-orthogonal multiple access (NOMA) schemes are considered for uplink (UL) offloading. Given the capability of IRSs in intelligently reconfiguring wireless channels over time, it is fundamentally unknown which multiple access scheme is superior for MEC UL offloading. To answer this question, we first investigate the impact of three different dynamic IRS beamforming (DIBF) schemes on the computation rate of both offloading schemes, based on the flexibility for the IRS in adjusting its beamforming (BF) vector in each transmission frame. Under the DIBF framework, computation rate maximization problems are formulated for both the NOMA and TDMA schemes, respectively, by jointly optimizing the IRS passive BF and the resource allocation. We rigorously prove that offloading adopting TDMA can achieve the same computation rate as that of NOMA, when all the devices share the same IRS BF vector during the UL offloading. By contrast, offloading exploiting TDMA outperforms NOMA, when the IRS BF vector can be flexibly adapted for UL offloading. Despite the non-convexity of the computation rate maximization problems for each DIBF scheme associated with highly coupled optimization variables, we conceive computationally efficient algorithms by invoking alternating optimization. Our numerical results demonstrate the significant performance gains achieved by the proposed designs over various benchmark schemes.
In this paper, we propose a new dynamic IRS beamforming framework to boost the sum throughput of an intelligent reflecting surface (IRS) aided wireless powered communication network (WPCN). Specifically, the IRS phase-shift vectors across time and re source allocation are jointly optimized to enhance the efficiencies of both downlink wireless power transfer (DL WPT) and uplink wireless information transmission (UL WIT) between a hybrid access point (HAP) and multiple wirelessly powered devices. To this end, we first study three special cases of the dynamic IRS beamforming,namely user-adaptive IRS beamforming, UL-adaptive IRS beamforming, and static IRS beamforming,by characterizing their optimal performance relationships and proposing corresponding algorithms. Interestingly, it is rigorously proved that the latter two cases achieve the same throughput, thus helping halve the number of IRS phase shifts to be optimized and signalling overhead practically required for UL-adaptive IRS beamforming. Then, we propose a general optimization framework for dynamic IRS beamforming, which is applicable for any given number of IRS phase-shift vectors available. Despite of the non-convexity of the general problem with highly coupled optimization variables, we propose two algorithms to solve it and particularly, the low-complexity algorithm exploits the intrinsic structure of the optimal solution as well as the solutions to the cases with user-adaptive and static IRS beamforming. Simulation results validate our theoretical findings, illustrate the practical significance of IRS with dynamic beamforming for spectral and energy efficient WPCNs, and demonstrate the effectiveness of our proposed designs over various benchmark schemes.
Intelligent reflecting surface (IRS) is a promising technology for achieving spectrum and energy efficient wireless networks cost-effectively. Most existing works on IRS have focused on exploiting IRS to enhance the performance of wireless communicat ion or wireless information transmission (WIT), while its potential for boosting the efficiency of radio-frequency (RF) wireless energy transmission (WET) still remains largely open. Although IRS-aided WET shares similar characteristics with IRS-aided WIT, they differ fundamentally in terms of design objective, receiver architecture, and practical constraints. In this paper, we provide a tutorial overview on how to efficiently design IRS-aided WET systems as well as IRS-aided systems with both WIT and WET, namely IRS-aided simultaneous wireless information and power transfer (SWIPT) and IRS-aided wireless powered communication network (WPCN), mainly from a communication and signal processing perspective. In particular, we present state-of-the-art solutions to tackle the unique challenges in operating these systems, such as IRS passive reflection optimization, channel estimation and deployment. In addition, we also propose new solution approaches and point out important directions for future research and investigation.
207 - Bin Duo , Yifan Liu , Qingqing Wu 2021
This paper investigates the achievable rate maximization problem of a downlink unmanned aerial vehicle (UAV)-enabled communication system aided by an intelligent omni-surface (IOS). Different from the state-of-the-art reconfigurable intelligent surfa ce (RIS) that only reflects incident signals, the IOS can simultaneously reflect and transmit the signals, thereby providing full-dimensional rate enhancement. To tackle such a problem, we formulate it by jointly optimizing the IOSs phase shift and the UAV trajectory. Although it is difficult to solve it optimally due to its non-convexity, we propose an efficient iterative algorithm to obtain a high-quality suboptimal solution. Simulation results show that the IOS-assisted UAV communications can achieve more significant improvement in achievable rates than other benchmark schemes.
In this paper, a novel intelligent reflecting surface (IRS)-assisted wireless powered communication network (WPCN) architecture is proposed for low-power Internet-of-Things (IoT) devices, where the IRS is exploited to improve the performance of WPCN under imperfect channel state information (CSI). We formulate a hybrid access point (HAP) transmission energy minimization problem by a joint design of time allocation, HAP energy beamforming, receiving beamforming, user transmit power allocation, IRS energy reflection coefficient and information reflection coefficient under the imperfect CSI and non-linear energy harvesting model. Due to the high coupling of optimization variables, this problem is a non-convex optimization problem, which is difficult to solve directly. In order to solve the above-mentioned challenging problems, the alternating optimization (AO) is applied to decouple the optimization variables to solve the problem. Specifically, through AO, time allocation, HAP energy beamforming, receiving beamforming, user transmit power allocation, IRS energy reflection coefficient and information reflection coefficient are divided into three sub-problems to be solved alternately. The difference-of-convex (DC) programming is applied to solve the non-convex rank-one constraint in solving the IRS energy reflection coefficient and information reflection coefficient. Numerical simulations verify the effectiveness of our proposed algorithm in reducing HAP transmission energy compared to other benchmarks.
With both the standardization and commercialization completed in an unforeseen pace for the 5th generation (5G) wireless network, researchers, engineers and executives from the academia and the industry have turned their sights on candidate technolog ies to support the next generation wireless networks. Reconfigurable intelligent surfaces (RIS), sometimes referred to as intelligent reflecting surfaces (IRS), have been identified to be potential components of the future wireless networks because they can reconfigure the propagation environment for wireless signals with low-cost passive devices. In doing so, the coverage of a cell can be expected to increase significantly as well as the overall throughput of the network. RIS has not only become an attractive research area but also triggered a couple of projects to develop appropriate solutions to enable the set-up of hardware demonstrations and prototypes. In parallel, technical discussions and activities towards standardization already took off in some regions. Promoting RIS to be integrated into future commercial networks and become a commercial success requires significant standardization work taken place both at regional level standards developing organizations (SDO) and international SDOs such as the 3rd Generation Partnership Project (3GPP). While many research papers study how RIS can be used and optimized, few effort is devoted to analyzing the challenges to commercialize RIS and how RIS can be standardized. This paper intends to shed some light on RIS from an industrial viewpoint and provide a clear roadmap to make RIS industrially feasible.
The high reflect beamforming gain of the intelligent reflecting surface (IRS) makes it appealing not only for wireless information transmission but also for wireless power transfer. In this letter, we consider an IRS-assisted wireless powered communi cation network, where a base station (BS) transmits energy to multiple users grouped into multiple clusters in the downlink, and the clustered users transmit information to the BS in the manner of hybrid non-orthogonal multiple access and time division multiple access in the uplink. We investigate optimizing the reflect beamforming of the IRS and the time allocation among the BSs power transfer and different user clusters information transmission to maximize the throughput of the network, and we propose an efficient algorithm based on the block coordinate ascent, semidefinite relaxation, and sequential rank-one constraint relaxation techniques to solve the resultant problem. Simulation results have verified the effectiveness of the proposed algorithm and have shown the impact of user clustering setup on the throughput performance of the network.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا