ترغب بنشر مسار تعليمي؟ اضغط هنا

The photoproduction of bottomonium-like states $Z_{b}(10610)$ and $Z_{b}(10650)$ via $gamma p$ scattering is studied within an effectiv Lagrangian approach and the vector-meson-dominance model. The Regge model is employed to calculate the photoproduc tion of $Z_{b}$ states via $t$-channel with $pi$ exchange.The numerical results show that the values of the total cross-sections of $Z_{b}(10610)$ and $Z_{b}(10650)$ can reach 0.09 nb and 0.02 nb, respectively, near the center of mass energy of 22 GeV. The experimental measurements and studies on the photoproduction of $Z_{b}$ states near energy region around $Wsimeq 22$ GeV is suggested. Moreover, with the help of eSTARlight and STARlight programs, one obtains the cross-sections and event numbers of $Z_{b}(10610)$ production in electron-ion collision (EIC) and Ultraperipheral collisions (UPCs). The results show that a considerable number of events from $Z_{b}(10610)$ can be produced on the relevant experiments of EICs and UPCs. Also, one calculates the rates and kinematic distributions for $gamma prightarrow Z_{b}n$ in $ep$ and $pA$ collisions via EICs and UPCs, and the relevant results will provide an important reference for the RHIC, LHC, EIC-US, LHeC, and FCC experiments to search for the bottomonium-like $Z_{b}$ states.
Inspired by the observation of the fully-charm tetraquark $X(6900)$ state at LHCb, the production of $X(6900)$ in $bar{p}prightarrow J/psi J/psi $ reaction is studied within an effective Lagrangian approach and Breit-Wigner formula. The numerical res ults show that the cross section of $X(6900)$ at the c.m. energy of 6.9 GeV is much larger than that from the background contribution. Moreover, we estimate dozens of signal events can be detected by D0 experiment, which indicates that searching for the $X(6900)$ via antiproton-proton scattering may be a very important and promising way. Therefore, related experiments are suggested to be carried out.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا