ﻻ يوجد ملخص باللغة العربية
The photoproduction of bottomonium-like states $Z_{b}(10610)$ and $Z_{b}(10650)$ via $gamma p$ scattering is studied within an effectiv Lagrangian approach and the vector-meson-dominance model. The Regge model is employed to calculate the photoproduction of $Z_{b}$ states via $t$-channel with $pi$ exchange.The numerical results show that the values of the total cross-sections of $Z_{b}(10610)$ and $Z_{b}(10650)$ can reach 0.09 nb and 0.02 nb, respectively, near the center of mass energy of 22 GeV. The experimental measurements and studies on the photoproduction of $Z_{b}$ states near energy region around $Wsimeq 22$ GeV is suggested. Moreover, with the help of eSTARlight and STARlight programs, one obtains the cross-sections and event numbers of $Z_{b}(10610)$ production in electron-ion collision (EIC) and Ultraperipheral collisions (UPCs). The results show that a considerable number of events from $Z_{b}(10610)$ can be produced on the relevant experiments of EICs and UPCs. Also, one calculates the rates and kinematic distributions for $gamma prightarrow Z_{b}n$ in $ep$ and $pA$ collisions via EICs and UPCs, and the relevant results will provide an important reference for the RHIC, LHC, EIC-US, LHeC, and FCC experiments to search for the bottomonium-like $Z_{b}$ states.
We search for rare decays of $D$ mesons to hadrons accompany with an electron-positron pair (h(h)$e^+e^-$), using an $e^+e^-$ collision sample corresponding to an integrated luminosity of 2.93 fb$^{-1}$ collected with the BESIII detector at $sqrt{s}$
Heavy quarkonium production in ultraperipheral nuclear collisions is described within the QCD dipole formalism. Realistic quarkonium wave functions in the rest frame are calculated solving the Schrodinger equation with a subsequent Lorentz boost to h
The dominant contributions to W-+ H+- production at the LHC are the tree-level b anti-b annihilation and the gg fusion. We perform for the case of the complex MSSM a complete calculation of the NLO EW corrections to the b anti-b annihilation channel
The extremely neutron-rich system $^{6}$H was studied in the direct $^2text{H}(^8text{He},{^4text{He}})^{6}$H transfer reaction with a 26 $A$ MeV secondary $^{8}$He beam. The measured missing mass spectrum shows a broad bump at $sim 4-8$ MeV energy r
Cosmological models can be constrained by determining primordial abundances. Accurate predictions of the He I spectrum are needed to determine the primordial helium abundance to a precision of $< 1$% in order to constrain Big Bang Nucleosynthesis mod