ترغب بنشر مسار تعليمي؟ اضغط هنا

The asymptotic optimality (a.o.) of various hyper-parameter estimators with different optimality criteria has been studied in the literature for regularized least squares regression problems. The estimators include e.g., the maximum (marginal) likeli hood method, $C_p$ statistics, and generalized cross validation method, and the optimality criteria are based on e.g., the inefficiency, the expectation inefficiency and the risk. In this paper, we consider the regularized least squares regression problems with fixed number of regression parameters, choose the optimality criterion based on the risk, and study the a.o. of several cross validation (CV) based hyper-parameter estimators including the leave $k$-out CV method, generalized CV method, $r$-fold CV method and hold out CV method. We find the former three methods can be a.o. under mild assumptions, but not the last one, and we use Monte Carlo simulations to illustrate the efficacy of our findings.
In this paper, we focus on the influences of the condition number of the regression matrix upon the comparison between two hyper-parameter estimation methods: the empirical Bayes (EB) and the Steins unbiased estimator with respect to the mean square error (MSE) related to output prediction (SUREy). We firstly show that the greatest power of the condition number of the regression matrix of SUREy cost function convergence rate upper bound is always one larger than that of EB cost function convergence rate upper bound. Meanwhile, EB and SUREy hyper-parameter estimators are both proved to be asymptotically normally distributed under suitable conditions. In addition, one ridge regression case is further investigated to show that when the condition number of the regression matrix goes to infinity, the asymptotic variance of SUREy estimator tends to be larger than that of EB estimator.
In this paper, we study the recursion of measurement outcomes for open quantum networks under sequential measurements. Open quantum networks are networked quantum subsystems (e.g., qubits) with the state evolutions described by a continuous Lindblad master equation. When measurements are performed sequentially along such continuous dynamics, the quantum network states undergo random jumps and the corresponding measurement outcomes can be described by a vector of probabilistic Boolean variables. The induced recursion of the Boolean vectors forms a probabilistic Boolean network. First of all, we show that the state transition of the induced Boolean networks can be explicitly represented through realification of the master equation. Next, when the open quantum dynamics is relaxing in the sense that it possesses a unique equilibrium as a global attractor, structural properties including absorbing states, reducibility, and periodicity for the induced Boolean network are direct consequences of the relaxing property. Particularly, we show that generically, relaxing quantum dynamics leads to irreducible and aperiodic chains for the measurement outcomes. Finally, we show that for quantum consensus networks as a type of non-relaxing open quantum network dynamics, the communication classes of the measurement-induced Boolean networks are encoded in the quantum Laplacian of the underlying interaction graph.
In this paper, we study extended linear regression approaches for quantum state tomography based on regularization techniques. For unknown quantum states represented by density matrices, performing measurements under certain basis yields random outco mes, from which a classical linear regression model can be established. First of all, for complete or over-complete measurement bases, we show that the empirical data can be utilized for the construction of a weighted least squares estimate (LSE) for quantum tomography. Taking into consideration the trace-one condition, a constrained weighted LSE can be explicitly computed, being the optimal unbiased estimation among all linear estimators. Next, for general measurement bases, we show that $ell_2$-regularization with proper regularization gain provides even lower mean-square error under a cost in bias. The regularization parameter is tuned by two estimators in terms of a risk characterization. Finally, a concise and unified formula is established for the regularization parameter with complete measurement basis under an equivalent regression model, which proves that the proposed tuning estimators are asymptotically optimal as the number of samples grows to infinity under the risk metric. Additionally, numerical examples are provided to validate the established results.
In this paper, we study dynamical quantum networks which evolve according to Schrodinger equations but subject to sequential local or global quantum measurements. A network of qubits forms a composite quantum system whose state undergoes unitary evol ution in between periodic measurements, leading to hybrid quantum dynamics with random jumps at discrete time instances along a continuous orbit. The measurements either act on the entire network of qubits, or only a subset of qubits. First of all, we reveal that this type of hybrid quantum dynamics induces probabilistic Boolean recursions representing the measurement outcomes. With global measurements, it is shown that such resulting Boolean recursions define Markov chains whose state-transitions are fully determined by the network Hamiltonian and the measurement observables. Particularly, we establish an explicit and algebraic representation of the underlying recursive random mapping driving such induced Markov chains. Next, with local measurements, the resulting probabilistic Boolean dynamics is shown to be no longer Markovian. The state transition probability at any given time becomes dependent on the entire history of the sample path, for which we establish a recursive way of computing such non-Markovian probability transitions. Finally, we adopt the classical bilinear control model for the continuous Schrodinger evolution, and show how the measurements affect the controllability of the quantum networks.
150 - Haisheng Li , Qiang Mu 2017
In this paper, we study contragredient duals and invariant bilinear forms for modular vertex algebras (in characteristic $p$). We first introduce a bialgebra $mathcal{H}$ and we then introduce a notion of $mathcal{H}$-module vertex algebra and a noti on of $(V,mathcal{H})$-module for an $mathcal{H}$-module vertex algebra $V$. Then we give a modular version of Frenkel-Huang-Lepowskys theory and study invariant bilinear forms on an $mathcal{H}$-module vertex algebra. As the main results, we obtain an explicit description of the space of invariant bilinear forms on a general $mathcal{H}$-module vertex algebra, and we apply our results to affine vertex algebras and Virasoro vertex algebras.
In this paper, we study Virasoro vertex algebras and affine vertex algebras over a general field of characteristic $p>2$. More specifically, we study certain quotients of the universal Virasoro and affine vertex algebras by ideals related to the $p$- centers of the Virasoro algebra and affine Lie algebras. Among the main results, we classify their irreducible $mathbb{N}$-graded modules by explicitly determining their Zhu algebras and show that these vertex algebras have only finitely many irreducible $mathbb{N}$-graded modules and they are $C_2$-cofinite.
108 - Biqiang Mu , Tianshi Chen 2017
Input design is an important issue for classical system identification methods but has not been investigated for the kernel-based regularization method (KRM) until very recently. In this paper, we consider in the time domain the input design problem of KRMs for LTI system identification. Different from the recent result, we adopt a Bayesian perspective and in particular make use of scalar measures (e.g., the $A$-optimality, $D$-optimality, and $E$-optimality) of the Bayesian mean square error matrix as the design criteria subject to power-constraint on the input. Instead to solve the optimization problem directly, we propose a two-step procedure. In the first step, by making suitable assumptions on the unknown input, we construct a quadratic map (transformation) of the input such that the transformed input design problems are convex, the number of optimization variables is independent of the number of input data, and their global minima can be found efficiently by applying well-developed convex optimization software packages. In the second step, we derive the expression of the optimal input based on the global minima found in the first step by solving the inverse image of the quadratic map. In addition, we derive analytic results for some special types of fixed kernels, which provide insights on the input design and also its dependence on the kernel structure.
50 - Biqiang Mu , Tianshi Chen , 2017
The kernel-based regularization method has two core issues: kernel design and hyperparameter estimation. In this paper, we focus on the second issue and study the properties of several hyperparameter estimators including the empirical Bayes (EB) esti mator, two Steins unbiased risk estimators (SURE) and their corresponding Oracle counterparts, with an emphasis on the asymptotic properties of these hyperparameter estimators. To this goal, we first derive and then rewrite the first order optimality conditions of these hyperparameter estimators, leading to several insights on these hyperparameter estimators. Then we show that as the number of data goes to infinity, the two SUREs converge to the best hyperparameter minimizing the corresponding mean square error, respectively, while the more widely used EB estimator converges to another best hyperparameter minimizing the expectation of the EB estimation criterion. This indicates that the two SUREs are asymptotically optimal but the EB estimator is not. Surprisingly, the convergence rate of two SUREs is slower than that of the EB estimator, and moreover, unlike the two SUREs, the EB estimator is independent of the convergence rate of $Phi^TPhi/N$ to its limit, where $Phi$ is the regression matrix and $N$ is the number of data. A Monte Carlo simulation is provided to demonstrate the theoretical results.
101 - Haisheng Li , Qiang Mu 2015
In this paper, we study Heisenberg vertex algebras over fields of prime characteristic. The new feature is that the Heisenberg vertex algebras are no longer simple unlike in the case of characteristic zero. We then study a family of simple quotient v ertex algebras and we show that for each such simple quotient vertex algebra, irreducible modules are unique up to isomorphism and every module is completely reducible. To achieve our goal, we also establish a complete reducibility theorem for a certain category of modules over Heisenberg algebras.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا