ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work, we predict the spectroscopy behavior of these light unflavor vector mesons with masses at the range of $2.4sim 3$ GeV, which are still missing in experiment. By presenting their mass spectrum and studying their two-body Okubo-Zweig-lizu ka allowed decay widths, we discuss the possible experimental evidences of these discussed states combing with the present experimental data. Especially, we strongly suggest our experimental colleague to carry out the exploration of these higher states via the $e^+e^-$ annihilation into light mesons. It is obvious that BESIII and Belle II will be potential experiment to achieve this target.
The interplay among anisotropic magnetic terms, such as the bond-dependent Kitaev interactions and single-ion anisotropy, plays a key role in stabilizing the finite-temperature ferromagnetism in the two-dimensional compound $rm{CrSiTe_3}$. While the Heisenberg interaction is predominant in this material, a recent work shows that it is rather sensitive to the compressive strain, leading to a variety of phases, possibly including a sought-after Kitaev quantum spin liquid [C. Xu, textit{et. al.}, Phys. Rev. Lett. textbf{124}, 087205 (2020)]. To further understand these states, we establish the quantum phase diagram of a related bond-directional spin-$3/2$ model by the density-matrix renormalization group method. As the Heisenberg coupling varies from ferromagnetic to antiferromagnetic, three magnetically ordered phases, i.e., a ferromagnetic phase, a $120^circ$ phase and an antiferromagnetic phase, appear consecutively. All the phases are separated by first-order phase transitions, as revealed by the kinks in the ground-state energy and the jumps in the magnetic order parameters. However, no positive evidence of the quantum spin liquid state is found and possible reasons are discussed briefly.
One-dimensional gapped phases that avoid any symmetry breaking have drawn enduring attention. In this paper, we study such phases in a bond-alternating spin-1 $K$-$Gamma$ chain built of a Kitaev ($K$) interaction and an off-diagonal $Gamma$ term. In the case of isotropic bond strength, a Haldane phase, which resembles the ground state of a spin-$1$ Heisenberg chain, is identified in a wide region. A gapped Kitaev phase situated at dominant ferromagnetic and antiferromagnetic Kitaev limits is also found. The Kitaev phase has extremely short-range spin correlations and is characterized by finite $mathbb{Z}_2$-valued quantities on bonds. Its lowest entanglement spectrum is unique, in contrast to the Haldane phase whose entanglement spectrum is doubly degenerate. In addition, the Kitaev phase shows a double-peak structure in the specific heat at two different temperatures. In the pure Kitaev limit, the two peaks are representative of the development of short-range spin correlation at $T_h simeq 0.5680$ and the freezing of $mathbb{Z}_2$ quantities at $T_l simeq 0.0562$, respectively. By considering bond anisotropy, regions of Haldane phase and Kitaev phase are enlarged, accompanied by the emergence of dimerized phases and three distinct magnetically ordered states.
Lithium niobate on insulator (LNOI), as an emerging and promising optical integration platform, faces shortages of on-chip active devices including lasers and amplifiers. Here, we report the fabrication on-chip erbium-doped LNOI waveguide amplifiers based on electron beam lithography and inductively coupled plasma reactive ion etching. A net internal gain of ~30 dB/cm in communication band was achieved in the fabricated waveguide amplifiers under the pump of a 974-nm continuous laser. This work develops new active devices on LNOI and will promote the development of LNOI integrated photonics.
94 - Qiang Luo , Chen Yang , Ru Zhang 2021
Lithium niobate on insulator (LNOI), regarded as an important candidate platform for optical integration due to its excellent nonlinear, electro-optic and other physical properties, has become a research hotspot. Light source, as an essential compone nt for integrated optical system, is urgently needed. In this paper, we reported the realization of 1550-nm band on-chip LNOI microlasers based on erbium-doped LNOI ring cavities with loaded quality factors higher than one million, which were fabricated by using electron beam lithography and inductively coupled plasma reactive ion etching processes. These microlasers demonstrated a low pump threshold of ~20 {mu}W and stable performance under the pump of a 980-nm band continuous laser. Comb-like laser spectra spanning from 1510 nm to 1580 nm were observed in high pump power regime, which lays the foundation of the realization of pulsed laser and frequency combs on rare-earth ion doped LNOI platform. This work has effectively promoted the development of on-chip integrated active LNOI devices.
The key to unraveling intriguing phenomena observed in various Kitaev materials lies in understanding the interplay of Kitaev ($K$) interaction and a symmetric off-diagonal $Gamma$ interaction. To provide insight into the challenging problems, we stu dy the quantum phase diagram of a bond-alternating spin-$1/2$ $g_x$-$g_y$ $K$-$Gamma$ chain by density-matrix renormalization group method where $g_x$ and $g_y$ are the bond strengths of the odd and even bonds, respectively. The phase diagram is dominated by even-Haldane ($g_x > g_y$) and odd-Haldane ($g_x < g_y$) phases where the former is topologically trivial while the latter is a symmetry-protected topological phase. Near the antiferromagnetic Kitaev limit, there are two gapped $A_x$ and $A_y$ phases characterized by distinct nonlocal string correlators. In contrast, the isotropic ferromagnetic (FM) Kitaev point serves as a multicritical point where two topological phase transitions meet. The remaining part of the phase diagram contains three symmetry-breaking magnetic phases. One is a six-fold degenerate FM$_{U_6}$ phase where all the spins are parallel to one of the $pm hat{x}$, $pm hat{y}$, and $pm hat{z}$ axes in a six-site spin rotated basis, while the other two have more complex spin structures with all the three spin components being finite. Existence of a rank-2 spin-nematic ordering in the latter is also discussed.
Erbium-doped lithium niobate high-Q microdisk cavities were fabricated in batches by UV exposure, inductively coupled plasma reactive ion etching and chemo-mechanical polishing. The stimulated emission at 1531.6 nm was observed under the pump of a na rrow-band laser working at 974 nm in erbium-doped lithium niobate microdisk cavity with threshold down to 400 {mu}W and a conversion efficiency of 3.1{times}10^{-4} %, laying the foundation for the LNOI integrated light source research.
152 - Yudi Feng , Min Li , Siqiang Luo 2019
We measure the photoelectron energy spectra from strong-field ionization of Kr in a two-color laser pulse consisting of a strong 400-nm field and a weak 800-nm field. The intensities of the main above-threshold ionization (ATI) and sideband peaks in the photoelectron energy spectra oscillate roughly oppositely with respect to the relative phase between the two-color components. We study the photoelectron interferometry in strong-field ATI regime from the view of interference of different electron trajectories in order to extend RABBITT type analysis to the strong-field regime. Based on the strong-field approximation model, we obtain analytical expressions for the oscillations of both ATI and sideband peaks with the relative phase. A phase shift of pi/4 with respect to the field maximum of the two-color laser pulse is revealed for the interference maximum in the main ATI peak without including the effect of the atomic potential.
For the long standing low mass puzzle of $Lambda_c(2940)^+$, we propose an unquenched picture. Our calculation explicitly shows that the mass of the $Lambda_c(2P,3/2^-)$ state can be lowered down to be consistent with the experimental data of $Lambda _c(2940)^+$ by introducing the $D^*N$ channel contribution. Additionally, we give a semi-quantitative analysis to illustrate why the $Lambda_c(2940)^+$ state has a narrow width. It means that the low mass puzzle of $Lambda_c(2940)^+$ can be solved. What is more important is that we predict a mass inversion relation for the $2P$ $Lambda_{c}^+$ states, i.e., the $Lambda_c(2P,1/2^-)$ state is higher than the $Lambda_c(2P,3/2^-)$, which is totally different from the result of conventional quenched quark model. It provides a criterion to test such an unquenched scenario for $Lambda_c(2940)^+$. We expect the future experimental progress from the LHCb and Belle II.
A family of spin-orbit coupled honeycomb Mott insulators offers a playground to search for quantum spin liquids (QSLs) via bond-dependent interactions. In candidate materials, a symmetric off-diagonal $Gamma$ term, close cousin of Kitaev interaction, has emerged as another source of frustration that is essential for complete understanding of these systems. However, the ground state of honeycomb $Gamma$ model remains elusive, with a suggested zigzag magnetic order. Here we attempt to resolve the puzzle by perturbing the $Gamma$ region with a staggered Heisenberg interaction which favours the zigzag ordering. Despite such favour, we find a wide disordered region inclusive of the $Gamma$ limit in the phase diagram. Further, this phase exhibits a vanishing energy gap, a collapse of excitation spectrum, and a logarithmic entanglement entropy scaling on long cylinders, indicating a gapless QSL. Other quantities such as plaquette-plaquette correlation are also discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا