ترغب بنشر مسار تعليمي؟ اضغط هنا

We report temperature dependent Andreev reflection measurements of Co/ Y$_{1}$Ba$_{2}$Cu$_{3}$O$_{7-delta}$ (YBCO) heterostructure samples with junction areas of 1 $mu$m diameter. Modelling of the 5-70 K conductivity data according to a modified Blon der-Tinkham-Klapwijk theory yields a spin polarization in Co film amounting to 34% which is almost constant up to 70 K. The YBCO films have been grown by pulsed laser deposition on sapphire substrates. The Co films are deposited by thermal evaporation on YBCO. The film is characterized by powder X-ray diffraction measurements which shows YBCO is grown in (001) direction.The critical current density, 5 x 10$^{6}$ A/cm$^{2}$, in YBCO remains nearly constant after deposition of Co at zero field and 77 K.
121 - B. D. Dudson 2008
A new modular code called BOUT++ is presented, which simulates 3D fluid equations in curvilinear coordinates. Although aimed at simulating Edge Localised Modes (ELMs) in tokamak X-point geometry, the code is able to simulate a wide range of fluid mod els (magnetised and unmagnetised) involving an arbitrary number of scalar and vector fields, in a wide range of geometries. Time evolution is fully implicit, and 3rd-order WENO schemes are implemented. Benchmarks are presented for linear and non-linear problems (the Orszag-Tang vortex) showing good agreement. Performance of the code is tested by scaling with problem size and processor number, showing efficient scaling to thousands of processors. Linear initial-value simulations of ELMs using reduced ideal MHD are presented, and the results compared to the ELITE linear MHD eigenvalue code. The resulting mode-structures and growth-rate are found to be in good agreement (BOUT++ = 0.245, ELITE = 0.239). To our knowledge, this is the first time dissipationless, initial-value simulations of ELMs have been successfully demonstrated.
We study the phenomenology of a Z-boson field coupled to hypercharge. The Z propagator has a non-trivial Kallen-Lehmann spectral density due to the mixing with a higher dimensional inert vector field. As a consequence detection possibilities at hadro n colliders are reduced. We determine the range of parameters where this field can be studied at the Tevatron and the LHC through its production cross section via the Drell-Yan mechanism.
The crystal structure of Nb22O54 is reported for the first time, and the structure of orthorhombic Nb12O29 is reexamined, resolving previous ambiguities. Single crystal x-ray and electron diffraction were employed. These compounds were found to cryst allize in the space groups P2/m (a = 15.7491(2) A, b = 3.8236(3) A, c = 17.8521(2) A, beta = 102.029(3)) and Cmcm (a = 3.8320(2) A, b = 20.7400(9) A, c = 28.8901(13) A) respectively and share a common structural unit, a 4x3 block of corner sharing NbO6 octahedra. Despite different constraints imposed by symmetry these blocks are very similar in both compounds. Within a block, it is found that the niobium atoms are not located in the centers of the oxygen octahedra, but rather are displaced inward toward the center of the block forming an apparent antiferroelectric state. Bond valence sums and bond lengths do not show the presence of charge ordering, suggesting that all 4d electrons are delocalized in these compounds at the temperature studied, T = 200 K.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا