ترغب بنشر مسار تعليمي؟ اضغط هنا

89 - Vinay Malvimat 2013
The original intensity interferometers were instruments built in the 1950s and 60s by Hanbury Brown and collaborators, achieving milli-arcsec resolutions in visible light without optical-quality mirrors. They exploited a then-novel physical effect, n ow known as HBT correlation after the experiments of Hanbury Brown and Twiss, and nowadays considered fundamental in quantum optics. Now a new generation of inten- sity interferometers is being designed, raising the possibility of measuring intensity correlations with three or more detectors. Quantum optics predicts some interesting features in higher-order HBT. One is that HBT correlation increases combinatorially with the number of detectors. Signal to noise considerations suggest, that many-detector HBT correlations would be mea- surable for bright masers, but very difficult for thermal sources. But the more modest three-detector HBT correlation seems measurable for bright stars, and would provide image information (namely the bispectrum) not present in standard HBT.
Theoretical studies of structure formation find an inverse proportionality between the concentration of dark matter haloes and virial mass. This trend has been recently confirmed for virial masses Mvir > ~6e12 Msun by the observation of the X-ray emi ssion from the hot halo gas. We present an alternative approach to this problem, exploring the concentration of dark matter haloes over galaxy scales on a sample of 18 early-type systems. Our c-Mvir relation is consistent with the X-ray analysis, extending towards lower virial masses, covering the range from ~4e11 Msun up to 5e12 Msun. A combination of the lensing analysis along with photometric data allows us to constrain the baryon fraction within a few effective radii, which is compared with prescriptions for adiabatic contraction (AC) of the dark matter haloes. We find that the standard methods for AC are strongly disfavored, requiring additional mechanisms -- such as mass loss during the contraction process -- to play a role during the phases following the collapse of the haloes.
158 - Ignacio Ferreras 2010
The low-mass end of the stellar Initial Mass Function (IMF) is constrained by focusing on the baryon-dominated central regions of strong lensing galaxies. We study in this letter the Einstein Cross (Q2237+0305), a z=0.04 barred galaxy whose bulge act s as lens on a background quasar. The positions of the four quasar images constrain the surface mass density on the lens plane, whereas the surface brightness (H-band NICMOS/HST imaging) along with deep spectroscopy of the lens (VLT/FORS1) allow us to constrain the stellar mass content, for a range of IMFs. We find that a classical single power law (Salpeter IMF) predicts more stellar mass than the observed lensing estimates. This result is confirmed at the 99% confidence level, and is robust to systematic effects due to the choice of population synthesis models, the presence of dust, or the complex disk/bulge population mix. Our non-parametric methodology is more robust than kinematic estimates, as we do not need to make any assumptions about the dynamical state of the galaxy or its decomposition into bulge and disk. Over a range of low-mass power law slopes (with Salpeter being Gamma=+1.35) we find that at a 90% confidence level, slopes with Gamma>0 are ruled out.
62 - Prasenjit Saha 2009
The Kustaanheimo-Stiefel transform turns a gravitational two-body problem into a harmonic oscillator, by going to four dimensions. In addition to the mathematical-physics interest, the KS transform has proved very useful in N-body simulations, where it helps handle close encounters. Yet the formalism remains somewhat arcane, with the role of the extra dimension being especially mysterious. This paper shows how the basic transformation can be interpreted as a rotation in three dimensions. For example, if we slew a telescope from zenith to a chosen star in one rotation, we can think of the rotation axis and angle as the KS transform of the star. The non-uniqueness of the rotation axis encodes the extra dimension. This geometrical interpretation becomes evident on writing KS transforms in quaternion form, which also helps derive concise expressions for regularized equations of motion.
We present a spatially resolved comparison of the stellar-mass and total-mass surface distributions of nine early-type galaxies. The galaxies are a subset of the Sloan Lens ACS survey (or SLACS; Bolton et al. 2006). The total-mass distributions are o btained by exploring pixelated mass models that reproduce the lensed images. The stellar-mass distributions are derived from population synthesis models fit to the photometry of the lensing galaxies. Uncertainties - mainly model degeneracies - are also computed. Stars can account for all the mass in the inner regions. A Salpeter IMF actually gives too much stellar mass in the inner regions and hence appears ruled out. Dark matter becomes significant by the half-light radius and becomes increasingly dominant at larger radii. The stellar and dark components are closely aligned, but the actual ellipticities are not correlated. Finally, we attempt to intuitively summarize the results by rendering the density, stellar-vs-dark ratio, and uncertainties as false-colour maps.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا