ترغب بنشر مسار تعليمي؟ اضغط هنا

Significant memory and computational requirements of large deep neural networks restrict their application on edge devices. Knowledge distillation (KD) is a prominent model compression technique for deep neural networks in which the knowledge of a tr ained large teacher model is transferred to a smaller student model. The success of knowledge distillation is mainly attributed to its training objective function, which exploits the soft-target information (also known as dark knowledge) besides the given regular hard labels in a training set. However, it is shown in the literature that the larger the gap between the teacher and the student networks, the more difficult is their training using knowledge distillation. To address this shortcoming, we propose an improved knowledge distillation method (called Annealing-KD) by feeding the rich information provided by the teachers soft-targets incrementally and more efficiently. Our Annealing-KD technique is based on a gradual transition over annealed soft-targets generated by the teacher at different temperatures in an iterative process, and therefore, the student is trained to follow the annealed teacher output in a step-by-step manner. This paper includes theoretical and empirical evidence as well as practical experiments to support the effectiveness of our Annealing-KD method. We did a comprehensive set of experiments on different tasks such as image classification (CIFAR-10 and 100) and NLP language inference with BERT-based models on the GLUE benchmark and consistently got superior results.
56 - Pranav Sharma 2020
The goal of serving and delighting customers in a personal and near human like manner is very high on automation agendas of most Enterprises. Last few years, have seen huge progress in Natural Language Processing domain which has led to deployments o f conversational agents in many enterprises. Most of the current industrial deployments tend to use Monolithic Single Agent designs that model the entire knowledge and skill of the Domain. While this approach is one of the fastest to market, the monolithic design makes it very hard to scale beyond a point. There are also challenges in seamlessly leveraging many tools offered by sub fields of Natural Language Processing and Information Retrieval in a single solution. The sub fields that can be leveraged to provide relevant information are, Question and Answer system, Abstractive Summarization, Semantic Search, Knowledge Graph etc. Current deployments also tend to be very dependent on the underlying Conversational AI platform (open source or commercial) , which is a challenge as this is a fast evolving space and no one platform can be considered future proof even in medium term of 3-4 years. Lately,there is also work done to build multi agent solutions that tend to leverage a concept of master agent. While this has shown promise, this approach still makes the master agent in itself difficult to scale. To address these challenges, we introduce LPar, a distributed multi agent platform for large scale industrial deployment of polyglot, diverse and inter-operable agents. The asynchronous design of LPar supports dynamically expandable domain. We also introduce multiple strategies available in the LPar system to elect the most suitable agent to service a customer query.
In this paper, a data-driven approach to characterize influence in a power network is presented. The characterization is based on the notion of information transfer in a dynamical system. In particular, we use the information transfer based definitio n of influence in a dynamical system and provide a data-driven approach to identify the influential state(s) and generators in a power network. Moreover, we show how the data-based information transfer measure can be used to characterize the type of instability of a power network and also identify the states causing the instability.
In this paper, we propose linear operator theoretic framework involving Koopman operator for the data-driven identification of power system dynamics. We explicitly account for noise in the time series measurement data and propose robust approach for data-driven approximation of Koopman operator for the identification of nonlinear power system dynamics. The identified model is used for the prediction of state trajectories in the power system. The application of the framework is illustrated using an IEEE nine bus test system.
In this paper, we present a novel approach to identify the generators and states responsible for the small-signal stability of power networks. To this end, the newly developed notion of information transfer between the states of a dynamical system is used. In particular, using the concept of information transfer, which characterizes influence between the various states and a linear combination of states of a dynamical system, we identify the generators and states which are responsible for causing instability of the power network. While characterizing influence from state to state, information transfer can also describe influence from state to modes thereby generalizing the well-known notion of participation factor while at the same time overcoming some of the limitations of the participation factor. The developed framework is applied to study the three bus system identifying various cause of instabilities in the system. The simulation study is extended to IEEE 39 bus system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا