ترغب بنشر مسار تعليمي؟ اضغط هنا

Heterointerfaces in complex oxide systems open new arenas in which to test models of strongly correlated material, explore the role of dimensionality in metal-insulator-transitions (MITs) and small polaron formation. Close to the quantum critical poi nt Mott MITs depend on band filling controlled by random disordered substitutional doping. Delta-doped Mott insulators are potentially free of random disorder and introduce a new arena in which to explore the effect of electron correlations and dimensionality. Epitaxial films of the prototypical Mott insulator GdTiO3 are delta-doped by substituting a single (GdO)+1 plane with a monolayer of charge neutral SrO to produce a two-dimensional system with high planar doping density. Unlike metallic SrTiO3 quantum wells in GdTiO3 the single SrO delta-doped layer exhibits thermally activated DC and optical conductivity that agree in a quantitative manner with predictions of small polaron transport but with an extremely high two-dimensional density of polarons, ~ 7E14 cm-2
We investigate correlation physics in high-density, two-dimensional electron liquids that reside in narrow SrTiO3 quantum wells. The quantum wells are remotely doped via an interfacial polar discontinuity and the three-dimensional (3D) carrier densit y is modulated by changing the width of the quantum well. It is shown that even at 3D densities well below one electron per site, short-range Coulomb interactions become apparent in transport, and an insulating state emerges at a critical density. We also discuss the role of disorder in the insulating state.
We report on the magnetotransport properties of a prototype Mott insulator/band insulator perovskite heterojunction in magnetic fields up to 31 T and at temperatures between 360 mK and 10 K. Shubnikov-de Haas oscillations in the magnetoresistance are observed. The oscillations are two-dimensional in nature and are interpreted as arising from either a single, spin-split subband or two subbands. In either case, the electron system that gives rise to the oscillations represents only a fraction of the electrons in the space charge layer at the interface. The temperature dependence of the oscillations are used to extract an effective mass of ~ 1 me for the subband(s). The results are discussed in the context of the t2g-states that form the bottom of the conduction band of SrTiO3.
A modulation-doping approach to control the carrier density of the high-density electron gas at a prototype polar/non-polar oxide interface is presented. It is shown that the carrier density of the electron gas at a GdTiO3/SrTiO3 interface can be red uced by up to 20% from its maximum value (~ 3x10^14 cm^-2) by alloying the GdTiO3 layer with Sr. The Seebeck coefficient of the two-dimensional electron gas increases concurrently with the decrease in its carrier density. The experimental results provide insight into the origin of charge carriers at oxide interfaces exhibiting a polar discontinuity.
Magnetotransport and superconducting properties are investigated for uniformly La-doped SrTiO3 films and GdTiO3/SrTiO3 heterostructures, respectively. GdTiO3/SrTiO3 interfaces exhibit a high-density two-dimensional electron gas on the SrTiO3-side of the interface, while for the SrTiO3 films carriers are provided by the dopant atoms. Both types of samples exhibit ferromagnetism at low temperatures, as evidenced by a hysteresis in the magnetoresistance. For the uniformly doped SrTiO3 films, the Curie temperature is found to increase with doping and to coexist with superconductivity for carrier concentrations on the high-density side of the superconducting dome. The Curie temperature of the GdTiO3/SrTiO3 heterostructures scales with the thickness of the SrTiO3 quantum well. The results are used to construct a stability diagram for the ferromagnetic and superconducting phases of SrTiO3.
Heterostructures and superlattices consisting of a prototype Mott insulator, GdTiO3, and the band insulator SrTiO3 are grown by molecular beam epitaxy and show intrinsic electronic reconstruction, approximately 1/2 electron per surface unit cell at e ach GdTiO3/SrTiO3 interface. The sheet carrier densities in all structures containing more than one unit cell of SrTiO3 are independent of layer thicknesses and growth sequences, indicating that the mobile carriers are in a high concentration, two-dimensional electron gas bound to the interface. These carrier densities closely meet the electrostatic requirements for compensating the fixed charge at these polar interfaces. Based on the experimental results, insights into interfacial band alignments, charge distribution and the influence of different electrostatic boundary conditions are obtained.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا