ترغب بنشر مسار تعليمي؟ اضغط هنا

The Fe Kalpha emission line is the most ubiquitous feature in the X-ray spectra of active galactic nuclei (AGN), but the origin of its narrow core remains uncertain. Here, we investigate the connection between the sizes of the Fe core emission region s and the measured sizes of the dusty tori in 13 local Type 1 AGN. The observed Fe K emission radii (R_fe) are determined from spectrally resolved line widths in X-ray grating spectra, and the dust sublimation radii (R_dust) are measured either from optical/near-infrared reverberation time lags or from resolved near-infrared interferometric data. This direct comparison shows, on an object-by-object basis, that the dust sublimation radius forms an outer envelope to the bulk of the Fe K emission. R_fe matches R_dust well in the AGN with the best constrained line widths currently. In a significant fraction of objects without a clear narrow line core, R_fe is similar to, or smaller than the radius of the optical broad line region. These facts place important constraints on the torus geometries for our sample. Extended tori in which the solid angle of fluorescing gas peaks at well beyond the dust sublimation radius can be ruled out. We also test for luminosity scalings of R_fe, finding that Eddington ratio is not a prime driver in determining the line location in our sample. We discuss in detail potential caveats due to data analysis and instrumental limitations, simplistic line modeling, uncertain black hole masses, as well as sample selection, showing that none of these is likely to bias our core result. The calorimeter on board Astro-H will soon vastly increase the parameter space over which line measurements can be made, overcoming many of these limitations.
Based on optical and X-ray data for a sample of 34 relaxed rich clusters of galaxies with redshifts of 0.1-0.9, we studied relative spatial distributions of the two major baryon contents, the cluster galaxies and the hot plasmas. Using multi-band pho tometric data taken with the UH88 telescope, we determined the integrated (two dimensional) radial light profiles of member galaxies in each cluster using two independent approaches, i.e., the background subtraction and the color-magnitude filtering. The ICM mass profile of each cluster in our sample, also integrated in two dimensions, was derived from a spatially-resolved spectral analysis using XMM-Newton and Chandra data. Then, the radially-integrated light profile of each cluster was divided by its ICM mass profile, to obtain a profile of galaxy light vs. ICM mass ratio. The ratio profiles over the central 0.65 R500 regions were found to steepen from the higher- to lower- redshift subsamples, meaning that the galaxies become more concentrated in the ICM sphere towards lower redshifts. The evolution is also seen in galaxy number vs. ICM mass ratio profiles. A range of systematic uncertainties in the galaxy light measurements, as well as many radius-/redshift- dependent biases to the galaxy vs. ICM profiles have been assessed, but none of them is significant against the observed evolution. Besides, the galaxy light vs. total mass ratio profiles also exhibit gradual concentration towards lower redshift. We interpret in the context that the galaxies, the ICM, and the dark matter components followed a similar spatial distribution in the early phase (z>0.5), while the galaxies have fallen towards the center relative to the others at a later phase.
Large organic molecules and carbon clusters are basic building blocks of life, but their existence in the universe has not been confirmed beyond doubt. A number of unidentified absorption features (arising in the diffuse inter-stellar medium), usuall y called ``Diffuse Inter-stellar Bands (DIBs), are hypothesized to be produced by large molecules. Among these, buckminsterfullerene C_60 has gained much attention as a candidate for DIB absorbers because of its high stability in space. Two DIBs at ~9577A and 9632A have been reported as possible features of C_60^+. However, it is still not clear how their existence depends on their environment. We obtained high-resolution spectra of three stars in/around the Orion Nebula, to search for any correlations of the DIB strength with carriers physical conditions, such as dust-abundance and UV radiation field. We find three DIBs at ~9017A, 9210A, and 9258A as additional C_60^+ feature candidates, which could support this identification. These DIBs have asymmetric profiles similar to the longer wavelength features. However, we also find that the relative strengths of DIBs are close to unity and differ from laboratory measurements, a similar trend as noticed for the 9577/9632 DIBs.
Aims. High angular resolution N-band imaging is used to discern the torus of active galactic nuclei (AGN) from its environment in order to allow a comparison of its mid-infrared properties to the expectations of the unified scenario for AGN. Methods. We present VLT-VISIR images of 25 low-redshift AGN of different Seyfert types, as well as N-band SEDs of 20 of them. In addition, we compare our results for 19 of them to Spitzer IRS spectra. Results. We find that at a resolution of ~ 0.35, all the nuclei of our observed sources are point-like, except for 2 objects whose extension is likely of instrumental origin. For 3 objects, however, we observed additional extended circumnuclear emission, even though our observational strategy was not designed to detect it. Comparison of the VISIR photometry and Spitzer spectrophotometry indicates that the latter is affected by extended emission in at least 7 out of 19 objects and the level of contamination is (0.20 ~ 0.85) * F_IRS. In particular, the 10 um silicate emission feature seen in the Spitzer spectra of 6 type I AGN, possibly 1 type II AGN and 2 LINERs, also probably originates not solely in the torus but also in extended regions. Conclusions. Our results generally agree with the expectations from the unified scenario, while the relative weakness of the silicate feature supports clumpy torus models. Our VISIR data indicate that, for low-redshift AGN, a large fraction of Spitzer IRS spectra are contaminated by extended emission close to the AGN.
Context: We investigate mid-infrared and X-ray properties of the dusty torus invoked in the unification scenario for active galactic nuclei. Aims: We use the relation between mid IR and hard X-ray luminosities to constrain the geometry and physical state of the dusty torus. Methods: We present new VISIR observations of 17 nearby AGN and combine these with our earlier VISIR sample of 8 Seyfert galaxies. Combining these observations with X-ray data from the literature we study the correlation between their mid IR and hard X-ray luminosities. Results: A statistically highly significant correlation between the rest frame 12.3 mircon (L_MIR) and 2-10 keV (L_X) luminosities is found. Furthermore, with a probability of 97%, we find that Sy 1 and Sy 2 have the same distribution of L_MIR over L_X. Conclusions: The high resolution of our MIR imaging allows us to exclude any significant non-torus contribution to the AGN mid IR continuum,thereby implying that the similarity in the L_MIR / L_X ratio between Sy 1s and Sy 2s is intrinsic to AGN. We argue that this is best explained by clumpy torus models. The slope of the correlation is in good agreement with the expectations from the unified scenario and indicates little to no change of the torus geometry with luminosity. In addition, we demonstrate that the high angular resolution is crucial for AGN studies in the IR regime.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا