ترغب بنشر مسار تعليمي؟ اضغط هنا

We report the synthesis and physical property characterization of PrFe1-xCoxAsO with x = 0.0 to 1.0. The studied samples are synthesized by solid state reaction route via vacuum encapsulation method. The pristine compound PrFeAsO does not show superc onductivity, but rather exhibits a metallic step like transition due to spin density wave ordering of Fe moments below 150 K, followed by another upward step due to anomalous ordering of Pr moments at 12 K. Both the Fe-SDW and Pr-TN temperatures decrease monotonically with Co substitution at Fe site. Superconductivity appears in a narrow range of x from 0.07 to 0.25 with maximum Tc at 11.12 K for x = 0.15. Samples, with x = 0.25 exhibit metallic behavior right from 300 K down to 2 K, without any Fe-SDW or Pr-TN steps in resistivity. In fact, though Fe-SDW decreases monotonically, the Pr-TN is disappeared even with x = 0.02. The magneto transport measurements below 14 Tesla on superconducting polycrystalline Co doped PrFeAsO lead to extrapolated values of the upper critical fields [Hc2(0)] of up to 60 Tesla.
We report synthesis, structural details and complete superconducting characterization of very recently discovered Nb2PdS5 new superconductor. The synthesized compound is crystallized in mono-clinic structure. Bulk superconductivity is seen in both ma gnetic susceptibility and electrical resistivity measurements with superconducting transition temperature (Tc) at 6K. The upper critical field (Hc2), being estimated from high field magneto-transport measure-ments is above 240kOe. The estimated Hc2(0) is clearly above the Pauli paramagnetic limit. Heat capacity measurements show clear transition with well defined peak at Tc, but with lower jump than as expected for a BCS type superconductor. The Sommerfield constant and Debye temperature as determined from low temperature fitting of heat capacity data are 32mJ/moleK2 and 263K respectively. Hall coefficients and resistivity in conjugation with electronic heat capacity indicates multiple gap superconductivity signatures in Nb2PdS5. We also studied the impact of hydrostatic pressure on superconductivity of Nb2PdS5 and found nearly no change in Tc for the given pressure range.
In this letter, we present the superconducting property characterization of a phase pure reasonably good quality YBa2Cu3O7-{delta} sample. Studied compound is crystallized in orthorhombic Pmmm space group with lattice parameters a, b, and c are 3.829 (2) {AA}, 3.887(1) {AA} and 11.666(3) {AA} respectively. Bulk superconductivity is observed below 90K as evidenced by resistivity and dc/ac magnetization measurements. The resistivity under magnetic field ({rho}TH) measurements showed clearly both the intra-grain and inter-grain transitions, which are supplemented by detailed (varying frequency and amplitude) ac susceptibility studies as well. The upper critical field at 0K i.e., Hc2(0) being determined from {rho}TH measurements with 50% criteria of resistivity drope is ~ 70 Tesla. Studied polycrystalline YBa2Cu3O7-{delta} is subjected to detailed heat capacity (CP) studies. Cp exhibited well defined anomaly at below 90 K, which decreases with applied field. Though the Cp anomaly/peak at Tc reduces with applied field, the same is not completely suppressed in high applied fields of up to 12 Tesla. The Sommerfeld constant ({gamma}) and Debye temperature ({Theta}D) as determined from low temperature fitting of CP(T) data to Sommerfeld-Debye model, are 10.65 mJ/mole-K2 and 312.3 K respectively. The results are compared with existing literature on bulk polycrystalline superconducting YBa2Cu3O7-{delta} sample
We report high field (up to 13 Tesla) magneto transport R(T)H] of YBa2Cu3O7 (YBCO):Agx (x= 0.0, 0.1 and 0.2) composites. The transport properties are significantly improved by Ag doping on the insulating grain boundaries of YBCO. Pure and Ag diffused YBCO superconducting samples are synthesized through solid state reaction route. Both pure and Ag doped YBCO are superconducting at below 90K. Though, the Tc (R=0) of YBCO:Ag samples under applied field of 13 Tesla is around 65K, the same is 45K for pure YBCO under same applied field. The upper critical field [Hc2(0)], being estimated from R(T)H is around 70Tesla for pristine sample, and is above 190Tesla for Ag doped samples. The boarding of the resistive transition under applied magnetic field is comparatively less and nearly single step for Ag doped samples, while the same is clearly two step and relatively much larger for the pristine YBCO. The resistive broadening is explained on the basis of changed inter-granular coupling and thermally activated flux flow (TAFF). The TAFF activation energy (U0) is found to be linear with applied magnetic field for all the samples, but with nearly an order of magnitude less value for the Ag doped samples. Summarily, it is shown that inclusion of Ag significantly improves the superconducting performance of YBCO:Ag composites, in particular under applied field.
In this article, we prove some normality criteria for a family of meromorphic functions having zeros with some multiplicity. Our main result involves sharing of a holomorphic function by certain differential polynomials. Our results generalize some o f the results of Fang and Zalcman and Chen et al to a great extent.
We report the effect of silver addition on superconducting performance of bulk YBCO (YBa2Cu3O7) superconductor. All the studied samples are prepared by conventional solid-state reaction method. Rietveld fitted X-ray diffraction data confirmed the sin gle phase formation for all the studied samples. Detailed AC susceptibility measurements as a function of driven AC amplitude (1Oe-17Oe) of these samples revealed the enhancement of grains coupling with increasing Ag content in YBCO+Agx composite system. 10wt% Ag added YBCO superconductors exhibited the optimum inter granular coupling. The Scanning Electron Microscopy (SEM) observations indicate an increase in the grains connectivity in terms of narrow grain boundaries for doped samples. The average grain size is found to increase with Ag doping. It is concluded that limited addition of Ag in bulk YBCO superconductor significantly improves the grains coupling and as result optimum superconducting performance. YBCO+Ag composites could prove to be potential candidates for bulk superconducting applications of the studied high Tc system.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا