ترغب بنشر مسار تعليمي؟ اضغط هنا

We experimentally study the dynamics of a degenerate one-dimensional Bose gas that is subject to a continuous outcoupling of atoms. Although standard evaporative cooling is rendered ineffective by the absence of thermalizing collisions in this system , we observe substantial cooling. This cooling proceeds through homogeneous particle dissipation and many-body dephasing, enabling the preparation of otherwise unexpectedly low temperatures. Our observations establish a scaling relation between temperature and particle number, and provide insights into equilibration in the quantum world.
We theoretically investigate a weakly-interacting degenerate Bose gas coupled to an empty Markovian bath. We show that in the universal phononic limit the system evolves towards an asymptotic state where an emergent temperature is set by the quantum noise of the outcoupling process. For situations typically encountered in experiments, this mechanism leads to significant cooling. Such dissipative cooling supplements conventional evaporative cooling and dominates in settings where thermalization is highly suppressed, such as in a one-dimensional quasicondensate.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا