ترغب بنشر مسار تعليمي؟ اضغط هنا

Based on the discretized horizon picture, we introduce a macroscopic effective model of the horizon area quanta that encapsulates the features necessary for black holes to evaporate consistently. The price to pay is the introduction of a hidden secto r that represents our lack of knowledge about the final destination of the black hole entropy. We focus on the peculiar form of the interaction between this hidden sector and the black hole enforced by the self-consistency. Despite the expressive power of the model, we arrive at several qualitative statements. Furthermore, we identify these statements as features inside the microscopic density of states of the horizon quanta, with the dimension of the configuration space being associated with the area per quanta in Planck unit, a UV cutoff proportional to the amount of excess entropy relative to Bekensteins law at the end of evaporation, and a zero-frequency-pole-like structure corresponding to, similarly, the amount of excess entropy at IR limit. We then relate this nearly-zero-frequency structure to the soft hairs proposed by Strominger et al., and argue that we should consider deviating away from the zero frequency limit for soft hairs to participate in the black hole evaporation.
57 - Kuan-Nan Lin , Pisin Chen 2021
Production of massless scalar particles by a relativistic semitransparent mirror of finite transverse size in (1+3)D flat spacetime is studied. The finite-size effect on the mode function is compared to the conventional scalar diffraction theory in o ptics. The derived particle spectrum formula is applied to two specific trajectories. One is the gravitational collapse trajectory commonly invoked in (1+1)D perfectly reflecting moving mirror literature, and the other is the plasma mirror trajectory proposed to be realizable in future experiments. We illustrate the finite-size effect on the particle spectrum, which should help to provide a guidance to the expectation in future flying mirror analog black hole experiments.
We investigate the production of primordial black holes (PBHs) and scalar-induced gravitational waves (GWs) for cosmological models in the Horndeski theory of gravity. The cosmological models of our interest incorporate the derivative self-interactio n of the scalar field and the kinetic coupling between the scalar field and gravity. We show that the scalar power spectrum of the primordial fluctuations can be enhanced on small scales due to these additional interactions. Thus, the formation of PBHs and the production of induced GWs are feasible for our model. Parameterizing the scalar power spectrum with a local Gaussian peak, we first estimate the abundance of PBHs and the energy spectrum of GWs produced in the radiation-dominated era. Then, to explain the small-scale enhancement in the power spectrum, we reconstruct the inflaton potential and self-coupling functions from the power spectrum and their spectral tilt. Our results show that the small-scale enhancement in the power spectrum can be explained by the local feature, either a peak or dip, in the self-coupling function rather than the local feature in the inflaton potential.
Quasinormal modes of perturbed black holes have recently gained much interest because of their tight relations with the gravitational wave signals emitted during the post-merger phase of a binary black hole coalescence. One of the intriguing features of these modes is that they respect the no-hair theorem, and hence, they can be used to test black hole space-times and the underlying gravitational theory. In this paper, we exhibit three different aspects of how black hole quasinormal modes could be altered in theories beyond Einstein general relativity. These aspects are the direct alterations of quasinormal modes spectra as compared with those in general relativity, the violation of the geometric correspondence between the high-frequency quasinormal modes and the photon geodesics around the black hole, and the breaking of the isospectrality between the axial and polar gravitational perturbations. Several examples will be provided in each individual case. The prospects and possible challenges associated with future observations will be also discussed.
Flying plasma mirrors induced by intense lasers has been proposed as a promising way to generate few-cycle EUV or X-ray lasers. In addition, if such a relativistic plasma mirror can accelerate, then it would serve as an analog black hole to investiga te the information loss paradox associated with the black hole Hawking evaporation. Among these applications, the reflectivity, which is usually frequency-dependent, would affect the outgoing photon spectrum and therefore impact on the analysis of the physics under investigation. In this paper, these two issues are investigated analytically and numerically with one-dimensional particle-in-cell (PIC) simulations. Based on our simulation results, we propose a new model that provides a better estimate of the reflectivity than those studied previously. Besides, we found that the peak frequency of the reflected spectrum of a gaussian incident wave deviates from the expected value, $4gamma^2omega$, due to the dependence of reflectivity on the frequency of the incident wave.
The rapid advancement of gravitational wave astronomy in recent years has paved the way for the burgeoning development of black hole spectroscopy, which enhances the possibility of testing black holes by their quasinormal modes (QNMs). In this paper, the axial gravitational perturbations and the QNM frequencies of black holes in the hybrid metric-Palatini gravity (HMPG) are investigated. The HMPG theory is characterized by a dynamical scalar degree of freedom and is able to explain the late-time accelerating expansion of the universe without introducing any textit{ad hoc} screening mechanism to preserve the dynamics at the Solar System scale. We obtain the master equation governing the axial gravitational perturbations of the HMPG black holes and calculate the QNM frequencies. Moreover, in the scrutiny of the black holes and their QNMs, we take into account the constraints on the model parameters based on the post-Newtonian analysis, and show how the QNM frequencies of the HMPG black holes would be altered in the observationally consistent range of parameter space.
Production of scalar particles by a relativistic, semi-transparent mirror in 1+3D Minkowski spacetime based on the Barton-Calogeracos (BC) action is investigated. The corresponding Bogoliubov coefficients are derived for a mirror with arbitrary traje ctory. In particular, we apply our derived formula to the gravitational collapse trajectory. In addition, we identify the relation between the particle spectrum and the particle production probability, and we demonstrate the equivalence between our approach and the existing approach in the literature, which is restricted to 1+1D. In short, our treatment extends the study to 1+3D spacetime. Lastly, we offer a third approach for finding the particle spectrum using the S-matrix formalism.
Hawkings seminal discovery of black hole evaporation was based on the semi-classical, perturbative method. Whether black hole evaporation may result in the loss of information remains undetermined. The solution to this paradox would most likely rely on the knowledge of the end-life of the evaporation, which evidently must be in the non-perturbative regime. Here we reinterpret the Hawking radiation as the tunneling of instantons, which is inherently non-perturbative. For definitiveness, we invoke the picture of shell-anti-shell pair production and show that it is equivalent to that of instanton tunneling. We find that such a shell pair production picture can help to elucidate firewalls and ER=EPR conjectures that attempt to solve the information paradox, and may be able to address the end-life issue toward an ultimate resolution.
We show that a generalized version of the holographic principle can be derived from the Hamiltonian description of information flow within a quantum system that maintains a separable state. We then show that this generalized holographic principle ent ails a general principle of gauge invariance. When this is realized in an ambient Lorentzian space-time, gauge invariance under the Poincare group is immediately achieved. We apply this pathway to retrieve the action of gravity. The latter is cast a la Wilczek through a similar formulation derived by MacDowell and Mansouri, which involves the representation theory of the Lie groups SO(3,2) and SO(4,1).
In this paper, we provide a counter-example to the ER=EPR conjecture. In an anti-de Sitter space, we construct a pair of maximally entangled but separated black holes. Due to the vacuum decay of the anti-de Sitter background toward a deeper vacuum, t hese two parts can be trapped by bubbles. If these bubbles are reasonably large, then within the scrambling time, there should appear an Einstein-Rosen bridge between the two black holes. Now by tracing more details on the bubble dynamics, one can identify parameters such that one of the two bubbles either monotonically shrinks or expands. Because of the change of vacuum energy, one side of the black hole would evaporate completely. Due to the shrinking of the apparent horizon, a signal of one side of the Einstein-Rosen bridge can be viewed from the opposite side. We analytically and numerically demonstrate that within a reasonable semi-classical parameter regime, such process can happen. Bubbles are a non-perturbative effect, which is the crucial reason that allows the transmission of information between the two black holes through the Einstein-Rosen bridge, even though the probability is highly suppressed. Therefore, the ER=EPR conjecture cannot be generic in its present form and its validity maybe restricted.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا