ترغب بنشر مسار تعليمي؟ اضغط هنا

193 - Linhao Li , Ping Wang , Qinghua Hu 2014
Background modeling is a critical component for various vision-based applications. Most traditional methods tend to be inefficient when solving large-scale problems. In this paper, we introduce sparse representation into the task of large scale stabl e background modeling, and reduce the video size by exploring its discriminative frames. A cyclic iteration process is then proposed to extract the background from the discriminative frame set. The two parts combine to form our Sparse Outlier Iterative Removal (SOIR) algorithm. The algorithm operates in tensor space to obey the natural data structure of videos. Experimental results show that a few discriminative frames determine the performance of the background extraction. Further, SOIR can achieve high accuracy and high speed simultaneously when dealing with real video sequences. Thus, SOIR has an advantage in solving large-scale tasks.
Qi-Wa refers to the up curl on the lengths of handscrolls and hanging scrolls, which has troubled Chinese artisans and emperors for as long as the art of painting and calligraphy exists. This warp is unwelcomed not only for aesthetic reasons, but its potential damage to the fiber and ink. Although it is generally treated as a part of the cockling and curling due to climate, mounting procedures, and conservation conditions, we emphasize that the intrinsic curvature incurred from the storage is in fact the main cause of Qi-Wa. The Qi-Wa height is determined by experiments to obey scaling relations with the length, width, curvature, and thickness of the scroll, which are supported by Molecular Dynamics Simulation and theoretic derivations. This understanding helps us come up with plausible remedies to mitigate Qi-Wa. All proposals are tested on real mounted paper and in simulations. Due to the general nature of this warp, we believe the lessons learnt from studying ancient Chinese scrolls can be applied to modern technologies such as the development of flexible electronic paper and computer screen.
The charged Higgs boson is quite common in many new physics models. In this study we examine the potential of observing a heavy charged Higgs boson in its decay mode of top-quark and bottom-quark in the Type-II Two-Higgs-Doublet-Model. In this model, the chirality structure of the coupling of charged Higgs boson to the top- and bottom-quark is very sensitive to the value of $tanbeta$. As the polarization of the top-quark can be measured experimentally from the top-quark decay products, one could make use of the top-quark polarization to determine the value of $tanbeta$. We preform a detailed analysis of measuring top-quark polarization in the production channels $gbto tH^-$ and $gbar{b}to bar{t}H^+$. We calculate the helicity amplitudes of the charged Higgs boson production and decay.Our calculation shows that the top-quark from the charged Higgs boson decay provides a good probe for measuring $tanbeta$, especially for the intermediate $tanbeta$ region. On the contrary, the top-quark produced in association with the charged Higgs boson cannot be used to measure $tanbeta$ because its polarization is highly contaminated by the $t$-channel kinematics.
The thermal entanglement is investigated in a two-qubit Heisenberg XXZ system with Dzyaloshinskii-Moriya (DM) interaction. It is shown that the entanglement can be efficiently controlled by the DM interaction parameter and coupling coefficient $J_{z} $. $D_{x}$(the x-component parameter of the DM interaction) has a more remarkable influence on the entanglement and the critical temperature than $D_{z}$(the z-component parameter of the DM interaction). Thus, by the change of DM interaction direction, we can get a more efficient control parameter to increase the entanglement and the critical temperature.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا